1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
3 years ago
5

What is the answer please help

Mathematics
1 answer:
Ilia_Sergeevich [38]3 years ago
7 0
Since both terms are perfect squares, you have to factor using the difference of squares formula where a=x and b=3

The formula for a^2-b^2 is...
(a+b)(a-b)

In this case the formula is 4(x+3)(x-3)

You might be interested in
A line passes through the points (2,4) and (5,6) . Select Yes or No to tell whether each equation describes this line. Equation
krek1111 [17]

\bf (\stackrel{x_1}{2}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{5}~,~\stackrel{y_2}{6}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{6-4}{5-2}\implies \cfrac{2}{3} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-4=\cfrac{2}{3}(x-2)

3 0
3 years ago
which of the following choices describe the conversion ratio you would use to convert pounds to ounces.
Nastasia [14]
1 pound is 16 ounces so 1:16 maybe? 
7 0
3 years ago
1.27(v+-7)=-17.78<br> Solve for v.
Alexandra [31]

Answer:

V= −7

Step-by-step explanation:

In pic

( hope this helps have a great day :) .)

8 0
3 years ago
PLS HELP ASAP calculate the distance between the two points. (18, -24) &amp; (87, 100)
GarryVolchara [31]

Answer:

<h3>The answer is 141.90 units</h3>

Step-by-step explanation:

The distance between two points can be found by using the formula

d =  \sqrt{ ({x1 - x2})^{2} +  ({y1 - y2})^{2}  } \\

where

(x1 , y1) and (x2 , y2) are the points

From the question the points are

(18, -24) & (87, 100)

The distance between them is

d =  \sqrt{ ({18 - 87})^{2} +  ({ - 24 - 100})^{2}  }  \\  =  \sqrt{ ( { - 69})^{2}  + ( { - 124})^{2} }  \\  =  \sqrt{4761 + 15376}  \\  = \sqrt{20137}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  = 141.90489773...

We have the final answer as

<h3>141.90 units</h3>

Hope this helps you

5 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Other questions:
  • What is 3y^2-y-2 in factored form?
    7·1 answer
  • if you were to solve the following system by substitution what would be the best variable to solve and from what equation? 2x+8y
    9·1 answer
  • Michelle decides to mix grades of gasoline in her truck. She puts in 9 gallons of regular and 11 gallons of premium for a total
    15·1 answer
  • Convert 11 milliliters to fluid ounces. Use 1 mL ≈ 0.034 fl oz.
    7·2 answers
  • PLEASE help find measure of angle - TEst review today
    12·1 answer
  • Can Someone help me?
    10·2 answers
  • Can someone help me please?
    7·1 answer
  • Factor this completely thank you
    14·1 answer
  • I’m doing homework and i don’t know how to find x
    15·1 answer
  • Hector is deciding how much he should invest each year. The Automatic Method multiplies the average income by 10%, where the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!