Answer:
16.46 g.
Explanation:
- It is a stichiometry problem.
- We should write the balance equation of the mentioned chemical reaction:
<em>2Cu + Zn(NO₃)₂ → Zn + 2Cu(NO₃).</em>
- It is clear that 2.0 moles of Cu reacts with 1.0 mole of Zn(NO₃)₂ to produce 1.0 mole of Zn and 2.0 moles of Cu(NO₃).
- We need to calculate the number of moles of the reacted Cu (32.0 g) using the relation:
<em>n = mass / molar mass</em>
- The no. of moles of Cu = mass / atomic mass = (32.0 g) / (63.546 g/mol) = 0.503 mol.
<u><em>Using cross multiplication:</em></u>
2.0 moles of Cu produces → 1.0 mole of Zn, from the stichiometry.
0.503 mole of Cu produces → ??? mole of Zn.
- The no. of moles of Zn produced = (1.0 mol)(0.503 mol) / (2.0 mol) = 0.2517 mol.
∴ The grams of Zn produced = no. of moles x atomic mass of Zn = (0.2517 mol)(65.38 g/mol) = 16.46 g.
KauCl4 :
K = + 1
au = + 7
Cl = - 2
hope this helps!
It's D because I know bcz I'm smart 8 times 8 is 60-nart
Answer:56%
Explanation:
In the dewpoint chart when you line it up it ends up at 56%
Answer:
Energy sources do not have 100% efficiency because <em>the processes of energy conversion to usable forms involves energy losses. </em>
Some have lower efficiencies due to; <u>energy losses in form of heat</u> during conversion, <u>poor technology applied during conversion</u> of energy and<u> lack of desire equipment</u> to use in the energy conversion system.
Explanation:
The desired form of energy for use is derived from conversion of energy from the source using an energy converter into another form which is usable. The efficiency of the energy converter is calculated as;
л = output energy/input energy
The efficiency of energy is limited to the cost of equipment required for conversion from energy source by the energy converter to a form which is usable. Additionally, because energy sources are scarce, the technology to use in energy conversion is a factor affecting energy efficiency in that high efficiency will require advanced technology with better equipment leading higher costs of that energy form. when heat losses are involved during energy conversion, efficiency lowers, thus its better if such losses are used as energy input in another system.