First you need to count the atoms of each element in the reactantsa and the products. Then use coefficients and place them in front of the compunds until the equations looks fully balanced.
Hope i helped
The answer is: 231.25 ppm.
To solve this, compute first the percentage of hydrogen in the 3.2 g air sample. % = (0.00074g/3.2g)*100 = 0.023125%
1% = 10,000ppm <--- use this as conversion factor.
0.023125%(10,000ppm/1%) = 231.25 ppm
Answer:
MnCO3 + 2H2O ⇄ MnO2 + HCO3- + 2e- +3H+
Explanation:
<u>The</u> unbalanced equation
MnCO3 ⇄ MnO2 + HCO3-
In MnCO3, the oxidation number of Mn is +2
In Mno2, the oxidation number of Mn is +4
The change from +2 to +4 requires an addition of 2 electrons (to the right side).
MnCO3 ⇄ MnO2 + HCO3- + 2e-
The total charge now is -3 on the right side. To balance this we add 3 hydrogen atoms on the right side.
MnCO3 ⇄ MnO2 + HCO3- + 2e- +3H+
On the right side we have 4 hydrogen atoms in total. On the left side we have 0 hydrogen atoms. So to balance, we have to add 2H2O on the left side
MnCO3 + 2H2O ⇄ MnO2 + HCO3- + 2e- +3H+
Now the reaction is balanced.
The balanced chemical reaction for the substances given would be as follows:
Zn + 2HCl = ZnCl2 + H2
We are given the amounts of the reactants used in the reaction. We use these amounts to determine which is the limiting and excess reactant. We do as follows:
10 g Zn (1 mol / 65.38 g) = 0.1530 mol
10 g HCl (1 mol / 36.46 g) = 0.2743 mol
From the the stoichiometric ratio which is 1 is to 2, the limiting reactant would be hydrochloric acid and the excess would be zinc metal.
Mass of zinc that remains = 0.1530 - (0.2743 / 2) = 0.0159 g Zn
Answer:
The second ring in an atom can only hold up to 8 electrons.