Answer:
<h2>All Group 1 metals form halides that are white solids at room temperature. The melting point is correlated to the strength of intermolecular</h2>
Answer : The volume of oxygen at STP is 112.0665 L
Solution : Given,
The number of moles of
= 5 moles
At STP, the temperature is 273 K and pressure is 1 atm.
Using ideal gas law equation :

where,
P = pressure of gas
V = volume of gas
n = the number of moles
T = temperature of gas
R = gas constant = 0.0821 L atm/mole K (Given)
By rearranging the above ideal gas law equation, we get

Now put all the given values in this expression, we get the value of volume.

Therefore, the volume of oxygen at STP is 112.0665 L
pH is the measure of the hydrogen ion concentration while pOH is of hydroxide ion concentration in the solution. The pH is 0.939 and pOH is 13.061 pOH.
pH is the concentration of the hydrogen ion released or gained by the species in the solution that depicts the acidity and basicity of the solution.
pOH is the concentration of the hydroxide ion in the solution and is dependent on the pH as an increase in pH decreases the pOH and vice versa.
Both HCl and HBr are strong acids and gets ionized 100 % in the solution. If we let 1 L of solution for the acids then the concentration of the hydrogen ion will be 0.100 M.
Since both completely dissociate we would just add the molarities of each of the H+ ions together and then calculate the PH and POH from that :
HCL(0.040M)----> H+(0.040M) +CL-(0.040M)
HBr(0.075M)----> H+(0.075M) +Br-(0.075M)
so 0.040M (H+ from HCL) + 0.075M (H+ from HBr) = 0.115M H+ in total.
pH is calculated as:
pH = -log[H+]
Substituting values in the equation:
log(0.115M)= 0.939 pH
pOH is calculated as:
14 - pH = pOH
Substituting values in the equation above:
14 - 0.939= 13.061 pOH
Therefore, pH is 0.939 and pOH is 13.061.
Learn more about pH and pOH here:
brainly.com/question/2947041
#SPJ4
Visual representation of covalent bonding indicating the valence shell electrons in the molecule, lines represents the shared pair of electron and pair of electrons that are not involved in bonding are represented as dots(lone pairs) are known as Lewis structures.
Compound formation takes place in order to complete the octet of each element that is according to octet rule, each atom forms bond with other atom in order to complete their octet that is to get eight electrons in its valence shell and attain stability.
An organic compound of the form
is known as ketene.
The given ketene is
.
The number of valence electron of:



The number of valence electrons in
= 
2 electrons are involved in each single bond between carbon and hydrogen and 4 electrons are involved in each double bond formed between carbon-carbon and carbon-oxygen. Hence, the total number of electrons involved in bond formation are 12 and rest 2 pair of electrons are present on oxygen as lone pair of electrons.
Therefore, the attached image is the Lewis structure of
.
Answer:
3
Explanation:
the answer is 3 because it is 3 for the o2 so 3 you <em>have </em><em>to </em><em>pay </em><em>more </em><em>attention </em><em>for </em><em>the </em><em>small </em><em>ditails </em>