The key to solving this problem is density. Density determines the mass of a molecule for a certain volume. Kia is given a beaker containing 100 g which volume is at <span>100 mL mark. Then the density of the liquid would be:
</span>density=mass/volume
density= 100g/ 100ml= 1g/ml
If t<span>he water now comes up to the 50 mL mark, then the weight would be:
</span>density = mass/volume
mass = volume * density
<span>mass = 50ml * (1g/ml)= 50g</span>
For the titration we use the equation,
M₁V₁ = M₂V₂
where M is molarity and V is volume. Substituting the known values,
(0.15 M)(43.2 mL) = (2)(M₂)(20.5 mL)
We multiply the right term by 2 because of the number of H+ in H2SO4. Calculating for M₂ will give us 0.158 M. Thus, the answer is approximately 0.16M.
6.0m(mol/kg) of HCl
125mL H2O = 0.125kg
6mol/kg = n mol/0.125kg, n = 0.75mol
When 0.75mol of HCl reacts, 0.75/2=0.375mol of H2 is produced. H2 = 2g/mol
So, 0.375mol H2 = 0.75g