Answer: Option D: 5.5×10²Joules
Explanation:
Work done is the product of applied force and displacement of the object in the direction of force.
W = F.s = F s cosθ
It is given that the force applied is, F = 55 N
The displacement in the direction of force, s = 10 m
The angle between force and displacement, θ = 0°
Thus, work done on the object:
W = 55 N × 10 m × cos 0° = 550 J = 5.5 × 10² J
Hence, the correct option is D.
Answer:
Things that have the same charge push each other away (they repel each other). This is called the Law of Charges. … Things that have more electrons than protons are negatively charged, while things with fewer electrons than protons are positively charged. Things with the same charge repel each other.
Explanation:
The Euglena is unique in that it is both heterotrophic (must consume food) and autotrophic (can make its own food).
Main sequence stars fuse hydrogen atoms to form helium atoms in their cores. About 90 percent of the stars in the universe, including the sun, are main sequence stars. These stars can range from about a tenth of the mass of the sun to up to 200 times as massive. Stars start their lives as clouds of dust and gas.
Answer:
Explanation:
1. We can find the temperature of each star using the Wien's Law. This law is given by:
(1)
So, the temperature of the first and the second star will be:


Now the relation between the absolute luminosity and apparent brightness is given:
(2)
Where:
- L is the absolute luminosity
- l is the apparent brightness
- r is the distance from us in light years
Now, we know that two stars have the same apparent brightness, in other words l₁ = l₂
If we use the equation (2) we have:

So the relative distance between both stars will be:
(3)
The Boltzmann Law says,
(4)
- σ is the Boltzmann constant
- A is the area
- T is the temperature
- L is the absolute luminosity
Let's put (4) in (3) for each star.

As we know both stars have the same size we can canceled out the areas.


I hope it helps!