1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
asambeis [7]
3 years ago
12

Which statement correctly describes the differences between positive and negative acceleration?

Physics
1 answer:
IceJOKER [234]3 years ago
3 0

Answer: c) Positive acceleration describes an increase in speed; negative acceleration describes a decrease in speed.

Hey

On Earth, you can move or you can not move. if you are moving 50 mph that means relative to Earth (not the Andromeda galaxy). When you start moving (accelerating) you are now moving relative to Earth. when you start slowing down (decelerating [most scientists just say you have negative acceleration]) you are starting to match your velocity to Earth's velocity.

Hope it helped and made any sence at all.

Spiky bob your answerer.

You might be interested in
I'm confusion, can I please get help???
kotykmax [81]

Answer:

Anything below 7.0 is acidic, so the range would be 0 to 7.

Neutral is simply 7, in the middle of the scale.

Lastly, anything above 7.0 is basic or alkaline, so that would be 7 to 14.

Good luck, I hope this helps

7 0
3 years ago
James threw a ball vertically upward with a velocity of 41.67ms-1 and after 2 second David threw a ball vertically upward with a
Reptile [31]

Answer:

When have passed 3.9[s], since James threw the ball.

Explanation:

First, we analyze the ball thrown by James and we will find the final height and velocity by the time two seconds have passed.

We'll use the kinematics equations to find these two unknowns.

y=y_{0} +v_{0} *t+\frac{1}{2} *g*t^{2} \\where:\\y= elevation [m]\\y_{0}=initial height [m]\\v_{0}= initial velocity [m/s] =41.67[m/s]\\t = time passed [s]\\g= gravity [m/s^2]=9.81[m/s^2]\\Now replacing:\\y=0+41.67 *(2)-\frac{1}{2} *(9.81)*(2)^{2} \\\\y=63.72[m]\\

Note: The sign for the gravity is minus because it is acting against the movement.

Now we can find the velocity after 2 seconds.

v_{f} =v_{o} +g*t\\replacing:\\v_{f} =41.67-(9.81)*(2)\\\\v_{f}=22.05[m/s]

Note: The sign for the gravity is minus because it is acting against the movement.

Now we can take these values calculated as initial values, taking into account that two seconds have already passed. In this way, we can find the time, through the equations of kinematics.

y=y_{o} +v_{o} *t-\frac{1}{2} *g*t^{2} \\y=63.72 +22.05 *t-\frac{1}{2} *(9.81)*t^{2} \\\\y=63.72 +22.05 *t-4.905*t^{2} \\

As we can see the equation is based on Time (t).

Now we can establish with the conditions of the ball launched by David a new equation for y (elevation) in function of t, then we match these equations and find time t

y=y_{o} +v_{o} *t+\frac{1}{2} *g*t^{2} \\where:\\v_{o} =55.56[m/s] = initial velocity\\y_{o} =0[m]\\now replacing\\63.72 +22.05 *t-(4.905)*t^{2} =0 +55.56 *t-(4.905)*t^{2} \\63.72 +22.05 *t =0 +55.56 *t\\63.72 = 33.51*t\\t=1.9[s]

Then the time when both balls are going to be the same height will be when 2 [s] plus 1.9 [s] have passed after David throws the ball.

Time = 2 + 1.9 = 3.9[s]

4 0
3 years ago
3. What is electric current?<br> The flow of moving electrons<br><br> electrons that move one time
3241004551 [841]

Answer:

An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. ... In electric circuits the charge carriers are often electrons moving through a wire.

7 0
3 years ago
Read 2 more answers
11. A car travels at 25 m/s to the North. It has an acceleration of 2 m/s’ to the south
Anna11 [10]

Answer:

delta x= 100m

Explanation:

vi= 25 meters

a= -27meters

t=20s

find delta x

4 0
3 years ago
The built in flash in a compact camera is usally capable of giving correct exsposure for distance up to how many meters?
Brut [27]

Answer:

An on-camera flash is an indispensible accessory for many photographers; it provides additional light when conditions become too dark to handhold your camera comfortably, allows you to achieve more balanced exposures in daylight conditions, permits freezing of fast-moving subjects and can also be used to control or trigger other flash light sources. Additionally, a flash can be used as a highly effective creative tool to establish an aesthetic that elevates your imagery when lighting conditions are considered less than stellar. The benefits of an external on-camera flash far outweigh those provided by a built-in camera flash, while the only drawback is keeping an additional piece of equipment.

On-Camera Flash versus Off-Camera Flash versus In-Camera Flash

The term on-camera flash simply refers to a type of strobe light (flash) that can connect directly with your camera. While it is referred to as “on-camera” this does not require the flash to be physically mounted on your camera. On-camera flashes can, and often are, used off-camera. This differs from other strobe-light sources, such as studio pack strobes and monolights in that these types of strobes are not meant to be physically connected to your camera (except under rare and unusual circumstances involving convoluted methods of adaptation). Additionally, on-camera flashes usually have a self-contained power supply, although external power sources can sometimes be used to improve performance or battery life.

On-camera external flash also refers to the type of external flash that can be used on your camera, compared to a built-in flash that is integrated into many cameras. An on-camera external flash performs better than a built-in flash in almost every regard with the one exception that it is not built into your camera. The ability to take the flash off your camera results in a significantly greater number of lighting options; far more than simply providing a blast of flat light to the scene to facilitate an adequate exposure. It is often not desirable to have your flash pointed squarely at the scene at hand; more often than not you will want to bounce the flash light off other surfaces and point in other directions to control the look of your flash. When using an in-camera flash, you are forced to use the flash at the given angle from which it extends.

Most built-in flashes are also located near the camera lens, which can often result in the red-eye effect  when photographing subjects in dimly lit conditions. Red-eye occurs because pupils dilate in dim light, the built-in flash is aligned with the lens's optical axis, its beam enters the eye and reflects back at the camera from the retina at the rear of the eye, which is quite red. Being able to use an on-camera flash source off-camera, from a different angle, will help to eliminate the red-eye effect in your photographs of people.

Guide Numbers, Manual Usage, Controlling Flash Power and Sync Speeds

Before delving into the automatic technology that is contained within most contemporary flashes, it is best to understand how to manually control and grasp a flash’s power. This is directly related to having an understanding of exposure ratios—how shutter speeds and apertures affect and balance each other—even though auto-exposure metering is available and often utilized for determining the best exposure settings.

Explanation:

8 0
3 years ago
Other questions:
  • What relation does the boiling point of an amine have to a similar hydrocarbon?
    14·2 answers
  • 2. What current flows through a hair dryer plugged into a 110 Volt circuit et it as a te
    12·1 answer
  • A cubic sample of a new kind of artificial tissue is subject to an increase in pressure of 160 kPa which results in a reduction
    9·1 answer
  • An object has a mass of 1kg on Earth. What is its weight on the moon?
    15·1 answer
  • Based on what you've read, answer the following questions.
    12·1 answer
  • An astronaut has left the International Space Station to test a new space scooter. Her partner measures the following velocity c
    10·1 answer
  • The state of strain at a point is plane strain with εx = ε0, εy = –2ε0, γxy = 0, where ε0 is a positive constant. What is the no
    14·1 answer
  • Assuming 70% of Earth's surface is covered in water at an average depth of 2.5 mi, estimate the mass of the water on Earth in Ki
    6·1 answer
  • Two airplanes leave an airport at the same
    9·2 answers
  • A 6.9-kg wheel with geometric radius m has radius of gyration computed about its mass center given by m. A massless bar at angle
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!