Answer:
A) 1/3200000
B) 19/20
Step-by-step explanation:
Percentage population of graduates = 5
Proportion of graduates from 100 random samples = percentage × number of samples
Proportion of graduates = 0.05 × 100 = 5
Probability of having 5 graduates among the 100 random samples:
P(1 graduate) = possible outcome / total required outcome
P(1 graduate) = (5 / 100) = 1/20
P(5 graduates) = (1/20)^5
P(5 graduates) = 1/3200000
Probability of never being a graduate = (1 - probability of being a graduate)
Probability of never being a graduate = ( 1 - (1/20)) = 19/20
I’m doing this to in 8th grade I don’t understand it neither
Answer:
![\large \boxed{\$9.00}](https://tex.z-dn.net/?f=%5Clarge%20%5Cboxed%7B%5C%249.00%7D)
Step-by-step explanation:
Let p = the original price of the ticket
![\begin{array}{rcl}\text{ Price before discount - discount} & = & \text{sale price}\\p - 0.15p & = & 7.65\\0.85p & = & 7.65\\p & = & \dfrac{7.65 }{0.85}\\\\& = & \mathbf{9.00}\\\end{array}\\\text{The original price of the ticket was $\large \boxed{\mathbf{\$9.00}}$}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D%5Ctext%7B%20Price%20before%20discount%20-%20discount%7D%20%26%20%3D%20%26%20%5Ctext%7Bsale%20price%7D%5C%5Cp%20-%200.15p%20%26%20%3D%20%26%207.65%5C%5C0.85p%20%26%20%3D%20%26%207.65%5C%5Cp%20%26%20%3D%20%26%20%5Cdfrac%7B7.65%20%7D%7B0.85%7D%5C%5C%5C%5C%26%20%3D%20%26%20%5Cmathbf%7B9.00%7D%5C%5C%5Cend%7Barray%7D%5C%5C%5Ctext%7BThe%20original%20price%20of%20the%20ticket%20was%20%24%5Clarge%20%5Cboxed%7B%5Cmathbf%7B%5C%249.00%7D%7D%24%7D)
Check:
![\begin{array}{rcl}9.00 - 0.15(9.00) & = & 7.65\\9.00 - 1.35 & = & 7.65\\7.65 & = & 7.65\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D9.00%20-%200.15%289.00%29%20%26%20%3D%20%26%207.65%5C%5C9.00%20-%201.35%20%26%20%3D%20%26%207.65%5C%5C7.65%20%26%20%3D%20%26%207.65%5C%5C%5Cend%7Barray%7D)
OK.
Answer: i think its 10
Step-by-step explanation:
2x = 48, 3x = 72, 4x = 96, 6x = 144
2x + 3x + 4x + 6x = 360
15x = 360
x = 24
2x = 2(24) = 48
3x = 3(24) = 72
4x = 4(24) = 96
6x = 6(24) = 144