Answer:
3.2 g O₂
Explanation:
To find the mass of O₂, you need to (1) convert grams H₂O to moles H₂O (via molar mass), then (2) convert moles H₂O to moles O₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles O₂ to grams O₂ (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs to reflect the sig figs of the given value (3.6 g).
Molar Mass (H₂O): 2(1.008 g/mol) + 15.998 g/mol
Molar Mass (H₂O): 18.014 g/mol
2 H₂O -----> 2 H₂ + 1 O₂
Molar Mass (O₂): 2(15.998 g/mol)
Molar Mass (O₂): 31.996 g/mol
3.6 g H₂O 1 mole 1 mole O₂ 31.996 g
---------------- x --------------- x --------------------- x --------------- = 3.2 g O₂
18.014 g 2 moles H₂O 1 mole
The answer is false thank u
This kind of damage occurs repeatedly, it may lead to permanent damage to your lungs that could cause a lower quality of life. Ozone may aggravate chronic lung diseases, such as emphysema and bronchitis. Scientists are concerned that repeated short-term damage from ozone exposure may permanently injure the lung
Answer:
A single carbon pool can often have several fluxes both adding and removing carbon simultaneously. For example, the atmosphere has inflows from decomposition (CO2 released by the breakdown of organic matter), forest fires and fossil fuel combustion and outflows from plant growth and uptake by the oceans.
Explanation: