Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>
Answer:
The only work done is when the person lifts the sack over a distance, W = 78.48 [N]
Explanation:
We have to remember the definition of work, which tells us that work is the result of a force by a distance, we must apply this concept in each of the movements of the person in the problem described.
W = F * d
where:
F = force [N]
d = distance [m]
The force is given by the producto of the mass by the gravity.
F = 5 * 9.81 = 49.05 [N]
W = 49.05 * 1.6 = 78.48 [N]
Answer:
The approximate terminal velocity of a sky diver before the parachute opens is 320 km/h.
Explanation:
- The terminal velocity is the maximum magnitude of velocity that is attained by the diver when he or she falls in the air.
- The terminal velocity of the person diving in air before opening parachute is 320 km/h that means the velocity when the person is experiencing free fall is 320 km/h.
- During terminal velocity, we can represent mathematical equation as;
Buoyancy force + drag force = Gravity
Search Results<span>By simply wrapping wire that has an electrical current running through it around a nail, you can make an electromagnet. When the electric current moves through a wire, it makes a magnetic field. ... You can make a temporary magnet by stroking apiece of iron or steel (such as a needle) along with a permanent magnet.
Hope This Helps!</span>