Answer:
485520 m
Explanation:
= initial velocity of the projectile = 1360 m/s
= final velocity of the projectile =
=
= 544 m/s
a = acceleraton due to gravity on moon = - 1.6 m/s²
h = Altitude of the projectile
Using the kinematics equation

Inserting the values

h = 485520 m
Solution :
Given data :
Mass of the merry-go-round, m= 1640 kg
Radius of the merry-go-round, r = 7.50 m
Angular speed,
rev/sec
rad/sec
= 5.89 rad/sec
Therefore, force required,

= 427126.9 N
Thus, the net work done for the acceleration is given by :
W = F x r
= 427126.9 x 7.5
= 3,203,451.75 J
A uranium-235 atom<span> absorbs a neutron and fissions into two new </span>atoms<span> (fission fragments), releasing three new neutrons and some binding energy. ... Several heavy elements, such as uranium, thorium, and plutonium, undergo both spontaneous fission, a form of radioactive decay and induced fission, a form of </span>nuclear<span> reaction.</span>