Answer:
Explanation:
Atom 1 and 4 because they have the same number of valence elctrons in its outermost shell
Answer: 
Explanation:
The Ideal Gas equation is:
(1)
Where:
is the pressure of the gas
the number of moles of gas
is the gas constant
is the absolute temperature of the gas in Kelvin.
is the volume
It is important to note that the behavior of a real gas is far from that of an ideal gas, taking into account that <u>an ideal gas is a single hypothetical gas</u>. However, under specific conditions of standard temperature and pressure (T=0\°C=273.15 K and P=1 atm=101,3 kPa) one mole of real gas (especially in noble gases such as Argon) will behave like an ideal gas and the constant R will be
.
However, in this case we are not working with standard temperature and pressure, therefore, even if we are working with Argon, the value of R will be far from the constant of the ideal gases.
Having this clarified, let's isolate
from (1):
(2)
Where:
is the absolute temperature of the gas in Kelvin.

(3)
Finally:
Answer:
In the last 25 years, the fish hunt in the Chesapeake Bay occurred very fastly due to which the fish industry enhanced. However, this rapid fish industrialization caused many of the fish species to become endangered. Hence, the fish industries started to use two basic management techniques which were conservation and allocation.
Answer:
Explanation:
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. Or Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.
Answer:
1.33 Å
Explanation:
Given that the edge length , a of the KCl which forms the FCC lattice = 6.28 Å
Also,
For the FCC lattice in which the anion-cation contact along the cell edge , the ratio of the radius of the cation to that of anion is 0.731.
Thus,
.................1
Also, the sum of the radius of the cation and the anion in FCC is equal to half of the edge length.
Thus,
...................2
Given that:

To find,

Using 1 and 2 , we get:

<u>Size of the potassium ion = 1.33 Å</u>