<u>Answer:</u>
The correct answer option is 48.
<u>Step-by-step explanation:</u>
In the given experiment, three events take place which include rolling a die, flipping a coin and spinning a spinner.
The possible outcomes of each of these events are as follows:
Rolling a die - 6
Flipping a coin - 2
Spinning a spinner - 4
Therefore, by multiplying their possible outcomes, we can find the number of elements in the sample space of this environment.
Number of elements = 6 × 2 × 4 = 48
We have to define an interval about the mean that contains 75% of the values. This means half of the values will lie above the mean and half of the values lie below the mean.
So, 37.5% of the values will lie above the mean and 37.5% of the values lie below the mean.
In a Z-table, mean is located at the center of the data. So the position of the mean is at 50% of the data. So the position of point 37.5% above the mean will be located at 50 + 37.5 = 87.5% of the overall data
Similarly position of the point 37.5% below the mean will be located at
50 - 37.5% = 12.5% of the overall data
From the z table, we can find the z value for both these points. 12.5% converted to z score is -1.15 and 87.5% converted to z score is 1.15.
Using these z scores, we can find the values which contain 75% of the values about the mean.
z score of -1.15 means 1.15 standard deviations below the mean. So this value comes out to be:
150 - 1.15(25) = 121.25
z score of 1.15 means 1.15 standard deviations above the mean. So this value comes out to be:
150 + 1.15(25) = 178.75
So, the interval from 121.25 to 178.75 contains the 75% of the data values.
Amount saved= fraction saved x amount of money received
A= 1/6 x 2
A=1/3
A=.33
33 cents or $.33
Hope this helps :)
![\bf \textit{vertical parabola vertex form with focus point distance} \\\\ 4p(y- k)=(x- h)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h,k+p)}\qquad \stackrel{directrix}{y=k-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\cap}\qquad \stackrel{"p"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvertical%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28y-%20k%29%3D%28x-%20h%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Ck%2Bp%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7By%3Dk-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Ccap%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Ccup%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)

something noteworthy is that the squared variable is the "x", thus the parabola is a vertical one, the "p" value is negative, so is opening downwards, and the h,k is pretty much the origin,
vertex is at (0,0)
the focus point is "p" or 5 units down from there, namely at (0, -5)
the directrix is "p" units on the opposite direction, up, namely at y = 5
the focal width, well, |4p| is pretty much the focal width, in this case, is simply yeap, you guessed it, 20.
Present value of annuity PV = P(1 - (1 + r/t)^-nt) / (r/t)
where: p is the monthly payment, r is the APR = 14.12% = 0.1412, t is the number of payments in one year = 12, n is the number of years = 2.
1,120.87 = P(1 - (1 + 0.1412/12)^(-2 x 12)) / (0.1412 / 12)
0.1412(1120.87) = 12P(1 - (1 + 0.1412/12)^-24)
P = 0.1412(1120.87) / 12(1 - (1 + 0.1412/12)^-24) = $53.88
Minimum monthly payment = 3.15% of 1120.87(1 + 0.1412/12) = 0.0315 x 1120.87(1 + 0.1412/12) = $35.72
Therefore, his first payment will be greater than the minimum payment by 53.88 - 35.72 = $18.16