Solids are tightly compacted
Liquids are medium
And gases are very spaced and floating around
Answer:
<em>Protons:
</em>
- Positively charged particle
- The number of these is the atomic number
- All atoms of a given element have the same number of these
<em>Neutrons: </em>
- Isotopes of a given element differ in the number of these
- The mass number is the number of these added to the number of protons
Explanation:
Protons (<em>positively charged</em>), neutrons (<em>neutral</em>) and electrons (negatively charged) are smaller than an atom and they are the main subatomic particles. The nucleus of an atom is composed of protons and neutrons, and the electrons are in the periphery at unknown pathways.
The <em>Atomic number</em> (Z) indicates the number of protons (
) in the nucleus. Every atom of an element have the <em>same atomic number</em>, thus the <em>same number of protons</em>.
The <em>mass number </em>(A) is the sum of the <em>number of protons</em> (
) <em>and neutrons</em> (N) that are present in the nucleus: <em>A= Z + N</em>
<em>Isotopes</em> are atoms of the <em>same element </em>which nucleus have the <em>same atomic number</em> (Z), and <em>different mass number (A)</em>, it means the <em>same number of protons</em> (
) and a <em>different number of neutrons</em> (N). For example, the oxygen in its natural state is a mixture of isotopes:
99.8% atoms with A= 16, Z=8, and N=8
0.037% atoms with A=17, Z=8, and N=9
0.204% atoms with A=18, Z=8, and N=10
Answer:
Answer: A. Gases are easily compressed because of the low density.
Explanation:
Answer:
The volume of the stock solution needed is 1L
Explanation:
Step 1:
Data obtained from the question. This include the following:
Concentration of stock solution (C1) = 6M
Volume of stock solution needed (V1) =?
Concentration of diluted solution (C2) = 1M
Volume of diluted solution (V2) = 6L
Step 2:
Determination of the volume of the stock solution needed.
With the dilution formula C1V1 = C2V2, the volume of the stock solution needed can be obtained as follow:
C1V1 = C2V2
6 x V1 = 1 x 6
Divide both side by 6
V1 = 6/6
V1 = 1L
Therefore, the volume of the stock solution needed is 1L