Answer:
The maximum energy stored in the combination is 0.0466Joules
Explanation:
The question is incomplete. Here is the complete question.
Three capacitors C1-11.7 μF, C2 21.0 μF, and C3 = 28.8 μF are connected in series. To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V. Determine the maximum energy stored in the series combination.
Energy stored in a capacitor is expressed as E = 1/2CtV² where
Ct is the total effective capacitance
V is the supply voltage
Since the capacitors are connected in series.
1/Ct = 1/C1+1/C2+1/C3
Given C1 = 11.7 μF, C2 = 21.0 μF, and C3 = 28.8 μF
1/Ct = 1/11.7 + 1/21.0 + 1/28.8
1/Ct = 0.0855+0.0476+0.0347
1/Ct = 0.1678
Ct = 1/0.1678
Ct = 5.96μF
Ct = 5.96×10^-6F
Since V = 125V
E = 1/2(5.96×10^-6)(125)²
E = 0.0466Joules
According to the given statement:
- The frequency response does not change, which is the first thing we notice.
- The new resistance at the resonance point causes a reduction in the circuit's current flow.
- Z = R + R₂
<h3>The definition of series circuits:</h3>
electrical circuit. The path that the entire current takes as it passes through each component makes up a series circuit. Branching is used in parallel circuits to divide the current and limit the amount that flows through each branch.
<h3>How does a series circuit operate?</h3>
According to this definition, there are three principles of series circuits: all parts share the same current, resistances add up to a larger total resistance, and voltage drops add up to a larger total voltage. In the definition of a series circuit, all of these guidelines have their origin.
<h3>According to the given information:</h3>
The impedance of a series circuit is
Z₀² = R² + (X-X) ²
The initial resistance impedance shifts to when we add another resistor to the series
Z² = (R + R₂) ² + (X - X) ²
Let's examine this sentence.
- The frequency response remains unchanged, which is the first thing we notice.
- The new resistance at the resonance point causes the circuit's current to decrease.
Z = R + R₂
To know more about electrical circuit visit:
brainly.com/question/1922668
#SPJ4
Answer:
242.85 Hz
Explanation:
For maximum intensity of sound, the path difference,ΔL = (n + 1/2)λ/2 where n = 0,1,2...
Since Abby is standing perpendicular to one speaker, the path length for the sound from the other speaker to him is L₁ = √(2.00² + 5.50²) = √(4.00 + 30.25) = √34.25 = 5.85 m.
The path difference to him is thus ΔL = 5.85 m - 5.50 m = 0.35 m.
Since ΔL = (n + 1/2)λ/2 and for lowest frequency n = 0,
ΔL = (n + 1/2)λ/2 = (0 + 1/2)λ/2 = λ/4
ΔL = λ = v/f and f = v/4ΔL where f = frequency of wave and v = velocity of sound wave = 340 m/s.
f = 340/(4 × 0.35) = 242.85 Hz
Answer:
A. The horizontal velocity vector points to the right & equals v cos θ.
Explanation:
The motion describes a parabolic path, where the horizontal speed is constant and the horizontal velocity vector always points to the right and equals v*cos θ.