Answer:
It will emerge at its initial speed not a slower speed.
Explanation:
It will emerge at the initial speed because the medium at the point of emergence is the same as the medium before incidence.
Light moves at a constant speed in any particular medium. Hence, the speed of light in air is constant in air and the speed of light in glass is constant in glass.
Answer:
The pressure at the top of the step is 129.303 kilopascals.
Explanation:
From Hydrostatics we find that the pressure difference between extremes of the water column is defined by the following formula, which is a particular case of the Bernoulli's Principle (
):
(1)
,
- Total pressures at the bottom and at the top, measured in pascals.
- Density of the water, measured in kilograms per cubic meter.
- Height difference of the step, measured in meters.
If we know that
,
,
and
, then the pressure at the top of the step is:




The pressure at the top of the step is 129.303 kilopascals.
Accelleration(a) is changing of velocity in second.
free fall a = g
speed increase = a = g = 20 (m/s) / s
Answer:
t ’=
, v_r = 1 m/s t ’= 547.19 s
Explanation:
This is a relative velocity exercise in a dimesion, since the river and the boat are going in the same direction.
By the time the boat goes up the river
v_b - v_r = d / t
By the time the boat goes down the river
v_b + v_r = d '/ t'
let's subtract the equations
2 v_r = d ’/ t’ - d / t
d ’/ t’ = 2v_r + d / t
In the exercise they tell us
d = 1.22 +1.45 = 2.67 km= 2.67 10³ m
d ’= 1.45 km= 1.45 1.³ m
at time t = 69.1 min (60 s / 1min) = 4146 s
the speed of river is v_r
t ’=
t ’=
In order to complete the calculation, we must assume a river speed
v_r = 1 m / s
let's calculate
t ’=
t ’= 547.19 s
Speed of a wave = (frequency) x (wavelength)
= (2 per second) x (10 m)
= 20 m/s .