#29 is 1x - 6 and you had to divide the two numbers
<h3>9 × 6</h3>
Because the surface area is rectangle and the area of rectangle is length × width
length = 9
width = 6.
so 9×6
Answer:
y= -4/3x
Step-by-step explanation:
hope this helps :)
Step-by-step explanation:
(a) ∫₋ₒₒ°° f(x) dx
We can split this into three integrals:
= ∫₋ₒₒ⁻¹ f(x) dx + ∫₋₁¹ f(x) dx + ∫₁°° f(x) dx
Since the function is even (symmetrical about the y-axis), we can further simplify this as:
= ∫₋₁¹ f(x) dx + 2 ∫₁°° f(x) dx
The first integral is finite, so it converges.
For the second integral, we can use comparison test.
g(x) = e^(-½ x) is greater than f(x) = e^(-½ x²) for all x greater than 1.
We can show that g(x) converges:
∫₁°° e^(-½ x) dx = -2 e^(-½ x) |₁°° = -2 e^(-∞) − -2 e^(-½) = 0 + 2e^(-½).
Therefore, the smaller function f(x) also converges.
(b) The width of the intervals is:
Δx = (3 − -3) / 6 = 1
Evaluating the function at the beginning and end of each interval:
f(-3) = e^(-9/2)
f(-2) = e^(-2)
f(-1) = e^(-1/2)
f(0) = 1
f(1) = e^(-1/2)
f(2) = e^(-2)
f(3) = e^(-9/2)
Apply Simpson's rule:
S = Δx/3 [f(-3) + 4f(-2) + 2f(-1) + 4f(0) + 2f(1) + 4f(2) + f(3)]
S ≈ 2.5103
You will need to use the Pythagorean Theorem, actually a derivative of it sometimes called the "distance formula" to find the length of the segments between two points. Mathematically the distance is:
d^2=(x2-x1)^2+(y2-y1)^2
d=√(dx)^2+(dy)^2)