Answer:
The options are not shown, so i will answer in a general way.
Let's define the variables:
h = number of hats
m = number of mugs.
We know that a total of 1000 items were ordered, then:
h + m = 1000
We also know that we have 3 times more mugs than hats, this can be written as:
m = 3*h
Now we have the system of equations:
h + m = 1000
m = 3*h
To solve these, we usually start by isolating one of the variables in one equation and then replace that in the other equation, but in this case, we already have m isolated in the second equation, then we can replace that in the first equation to get:
h + m = 1000
h + (3*h) = 1000
Now we can solve this equation for h, and find the number of hats ordered.
4*h = 1000
h = 1000/4 = 250
There were 250 hats ordered.
Answer:
5.5 miles
Step-by-step explanation:
If he ran 11 miles in 2 hours then divide both of them by 2, so 1 hour is equal to 11 / 2 which is 5.5 miles
Answer:
11 is b
Step-by-step explanation:
thats all i can do sorry
Answer:
69.14% probability that the diameter of a selected bearing is greater than 84 millimeters
Step-by-step explanation:
According to the Question,
Given That, The diameters of ball bearings are distributed normally. The mean diameter is 87 millimeters and the standard deviation is 6 millimeters. Find the probability that the diameter of a selected bearing is greater than 84 millimeters.
- In a set with mean and standard deviation, the Z score of a measure X is given by Z = (X-μ)/σ
we have μ=87 , σ=6 & X=84
- Find the probability that the diameter of a selected bearing is greater than 84 millimeters
This is 1 subtracted by the p-value of Z when X = 84.
So, Z = (84-87)/6
Z = -3/6
Z = -0.5 has a p-value of 0.30854.
⇒1 - 0.30854 = 0.69146
- 0.69146 = 69.14% probability that the diameter of a selected bearing is greater than 84 millimeters.
Note- (The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X)