Answer:
The air pressure is 9.8 *10^4 pa
The water will rise to a height of 10.0 meter
Explanation:
Step 1: Data given
As a storm from moves in, you notice that a column of mercury in a barometer rises to 736 mm.
Step 2: Calculate the air pressure
The Pressure against the mercury column = h*d*g = 0.736 * 13593 * 9.81 = 9.8 * 10^4 Pa
Step 3: Calculate the height of the water
Let the Pressure the water column for same pressure is h meter : -
9.8 * 10^4 = h*d*g
=>9.8*10^4 = h*1000*9.81
=>h = 10.0 meter
The water will rise to a height of 10.0 meter
Answer: Option (C) is the correct answer.
Explanation:
Molecules in a liquid have less force of attraction as compared to solids. But liquid molecules have more force of attraction as compared to gases.
Since molecules of a gas are held together by weak Vander waal forces, therefore, they expand to fill the container whereas molecules in a liquid are not expanded in a container like gases because of more force of attraction within molecules of liquids as compared to gases.
Hence, a liquid can take the shape of container in which it is kept.
Thus, we can conclude that out of the given options, a liquid change to take the shape of its container but NOT expand to fill the container itself because the particles of a liquid are held together loosely enough to flow, but not so loose that they expand.
B. a circle graph
circle graphs are the best to show percentages because they’re very easy to look at and get info from
I want to say addition. But I have a tendency to be wrong