Answer:
Your pinball machine was built using two kinds of simple machines: a lever and an inclined plane. The lever shot the marble to the top of the box with lots of force. The inclined planes made the marble wind its way down to the bottom.
Interference if the hardest to remove due to the superposition of the frequencies of the radio waves
The answer is A vaporization
Vo = 18 m/s
angle 35 degrees
1) Components of the initial velocity
Vox = Vo*cos(35) = 18*cos(35) m/s = 14.74 m/s
Voy = Vo* sin(35) = 18*sin(35) m/s = 10.32 m/s
2) Equations of postion:
x = Vox*t
y = Voy*t - gt^2 / 2
3) Calculations
A) t = 0.5 s, t = 1.0 st = 1.5 s, t = 2.0 s
x = 14.74 * t
t = 0.5 s => x = 14.74 m/s * 0.5s = 7.37 m
t = 1.0 s => x = 14.74 m/s * 1.0s = 14.74 m
t = 1.5s => x = 22.11 m
t = 2s => x = 29.48 m
B)
y = Voy*t - gt^2 / 2
Voy = 10.32 m/s
g = 10 m/s (approximation)
y = 10.32*t - 5t^2
t = 0.5 s=> y = 3.91m
t = 1 s => y = 5.32m
t = 1.5 s => y = 4.23m
t = 2 s => y = 0.64 m
Hello
This is a problem of accelerated motion, where the acceleration involved is the gravitational acceleration:

, and where the negative sign means it points downwards, against the direction of the motion.
Therefore, we can use the following formula to solve the problem:

where

is the initial vertical velocity of the athlete,

is the vertical velocity of the athlete at the maximum height (and

at maximum height of an accelerated motion) and S is the distance covered between the initial and final moment (i.e., it is the maximum height). Re-arranging the equation, we get