Force = mass x acceleration
force = 2500kg x (20m/s / 10m/s)
force = 2500kg x 2m/s^2
force = 5000kg m/s^2 = 5kN
i hope this is right (^^)
        
             
        
        
        
Answer:
ρ = 7500 kg/m³
Explanation:
Given that
mass ,m = 12 kg
Displace volume ,V= 1.6 L
We know that
1000 m ³ = 1 L
Therefore V= 0.0016 m ³
When metal piece is fully submerged
We know that 
mass = Density x volume

Now by putting the values in the above equation

ρ = 7500 kg/m³
Therefore the density of the metal piece will be  7500 kg/m³.
 
        
             
        
        
        
The answer would be 46.482 because you multiply 18.3 by 2.54 because for every inch you get 2.54 centimeters
        
                    
             
        
        
        
4. Grass - Caterpillar - Hedgehog - Fox
5. Caterpillar, Rabbit, Mouse.
6. Cougar and Fox.
7. Bacteria
8. The bird, hedgehog, Fox and cougar would be effected since the Hedgehogs and birds would soon die out due to the loss of their food. Once they die out, the cougar and Fox would have no predators left to eat.
        
             
        
        
        
Answer:
1.170*10^-3 m
3.23*10^-32 m
Explanation:
To solve this, we apply Heisenberg's uncertainty principle. 
the principle states that, "if we know everything about where a particle is located, then we know nothing about its momentum, and vice versa." it also can be interpreted as "if the uncertainty of the position is small, then the uncertainty of the momentum is large, and vice versa"
Δp * Δx = h/4π
m(e).Δv * Δx = h/4π
If we make Δx the subject of formula, by rearranging, we have
Δx = h / 4π * m(e).Δv
on substituting the values, we have
for the electron 
Δx = (6.63*10^-34) / 4 * 3.142 * 9.11*10^-31 * 4.95*10^-2
Δx = 6.63*10^-34 / 5.67*10^-31
Δx = 1.170*10^-3 m
for the bullet
Δx = (6.63*10^-34) / 4 * 3.142 * 0.033*10^-31 * 4.95*10^-2
Δx = 6.63*10^-34 / 0.021
Δx = 3.23*10^-32 m
therefore, we can say that the lower limits are 1.170*10^-3 m for the electron and 3.23*10^-32 for the bullet