Cos s=-2/5 and sin t=4/5, s and t are in quadrant II
find cos(s+t) and cos(s-t)
1 answer:
Answer:
•cos(s+t) = cos(s)cos(t) - sin(s)sin(t) = (-⅖).(-⅗) - (√21 /5).(⅘) = +6/25 - 4√21 /25 = (6-4√21)/25
•cos(s-t) = cos(s)cos(t) + sin(s)sin(t) = (-⅖).(-⅗) + (√21 /5).(⅘) = +6/25 + 4√21 /25 = (6+4√21)/25
cos(t) = ±√(1 - sin²(t)) → -√(1 - sin²(t)) = -√(1 - (⅘)²) = -⅗
sin(s) = ±√(1 - cos²(s)) → +√(1- cos²(s)) = +√(1 - (-⅖)²) = √21 /5
You might be interested in
Cylinder and trapezium (search what the 3D shape is)
Answer:
3.3
Step-by-step explanation:
d = (10 - 4) + (8 - 3)
d = 6 + 5
d = square root of 11
d = 3.31662479 or 3.3
I'll be expecting that brainliest :)
C><span>7 is your answer. Hope this helps :)</span>
Answer:
4×4÷4+4=4
(4×4+4)÷4=5
4+4-4÷4=7