Not an inequality but d-m=5v. (d-m)/5=v. Basically just isolate the variable
C. The trend line describes the pattern in the data if one exists. :)
9514 1404 393
Answer:
(x1, x2) = (3, -4)
Step-by-step explanation:
As with any 2-step linear equation, subtract the constant, then multiply by the inverse of the coefficient of the variable.
![\left[\begin{array}{cc}3&2\\5&5\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right]+\left[\begin{array}{c}1\\2\end{array}\right]=\left[\begin{array}{c}2\\-3\end{array}\right]\\\\\left[\begin{array}{cc}3&2\\5&5\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}1\\-5\end{array}\right]\\\\\left[\begin{array}{c}x\\y\end{array}\right]=\dfrac{1}{5}\left[\begin{array}{cc}5&-2\\-5&3\end{array}\right]\left[\begin{array}{c}1\\-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%262%5C%5C5%265%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C2%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%262%5C%5C5%265%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C-5%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%3D%5Cdfrac%7B1%7D%7B5%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%26-2%5C%5C-5%263%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C-5%5Cend%7Barray%7D%5Cright%5D)
Performing the multiplication of the matrix by the vector gives the solution.
x = ((5)(1) +(-2)(-5))/5 = 15/5 = 3
y = ((-5)(1) +(3)(-5))/5 = -20/5 = -4
Using your variables, x1, x2, the solution is ...
(x1, x2) = (3, -4)
The function for x=3 is 1
Answer:
a) 0.1587
b) 0.0475
c) 0.7938
Step-by-step explanation:
Let's start defining our random variable.
X : ''Thickness (in mm) of ancient prehistoric Native American pot shards discovered in a Hopi village''
X is modeled as a normal random variable.
X ~ N(μ,σ)
Where μ is the mean and σ is the standard deviation.
To calculate all the probabilities, we are going to normalize the random variable X.
We are going to call to the standard normal distribution ''Z''.
[(X - μ) / σ] ≅ Z
We normalize by subtracting the mean to X and then dividing by standard deviation.
We can find the values of probabilities for Z in a standard normal distribution table.
We are going to call Φ(A) to the normal standard cumulative distribution evaluated in a value ''A''
a)

Φ(-1) = 0.1587
b)


1 - Φ(1.666) = 1 - 0.9525 = 0.0475
c)

Φ(1.666) - Φ(-1) = 0.9525 - 0.1587 = 0.7938