Answer:
56.2÷6.02×10^23
=9.34×10^23
Explanation:
Divide the given mass of the atom by the mass of an Atom (the avogadro's constant) to find the number of atoms in the given mass.
Answer:
Approximately
.
Explanation:
The gallium here is likely to be produced from a
solution using electrolysis. However, the problem did not provide a chemical equation for that process. How many electrons will it take to produce one mole of gallium?
Note the Roman Numeral "
" next to
. This numeral indicates that the oxidation state of the gallium in this solution is equal to
. In other words, each gallium atom is three electrons short from being neutral. It would take three electrons to reduce one of these atoms to its neutral, metallic state in the form of
.
As a result, it would take three moles of electrons to deposit one mole of gallium atoms from this gallium
solution.
How many electrons are supplied? Start by finding the charge on all the electrons in the unit coulomb. Make sure all values are in their standard units.
.
.
Calculate the number of electrons in moles using the Faraday's constant. This constant gives the size of the charge (in coulombs) on each mole of electrons.
.
It takes three moles of electrons to deposit one mole of gallium atoms
. As a result,
of electrons would deposit
of gallium atoms
.
Answer:
Hello friends
Explanation:
<h3>For a given principal quantum number for or n, the corresponding angular quantum number or is equivalent to a range between 0 and( n-1)</h3>
<h3>This means that the angular quantum number for a principal quantum number of 2 is equivalent to.</h3>
<h3>1 = 0 - > (n - 1) = 0 - > (2 - 1) = 0 - > 1</h3>
<h3>Hope it's helpfully. </h3>
The correct option is STRONTIUM.
Strontium is a group 2 element, that means it has two electrons in its outermost shell. This element will prefer to lose these two electrons in its outermost shell in order to attain the octet form, therefore, it will form electrovalent bond with non metals which it can donate two electrons to.
The answer is , C. Both the atomic mass and the atomic number increase from left to right .