Answer:
a. V = 1000 mL
b. Denisty = 0.022 g/mL
Explanation:
a.
First we need to convert the volume of the Osmium into mL. For that purpose we are given the conversion unit as:
1 mL = 0.1 cL
Hence, the given volume of Osmium will be:
V = Volume of Osmium = 100 cL = (100 cL)(1 mL/0.1 cL) = 1000 mL
<u>V = 1000 mL</u>
b.
The density of Osmium is given by the following formula:
Density = mass/Volume
Denisty = 22 g/1000 mL
<u>Denisty = 0.022 g/mL</u>
The actual yield is 43 g Cl₂.
The <em>limiting reactant was MnO₂</em> because it gave the smaller mass of Cl₂.
∴ The <em>theoretical yield</em> is 60.25 g Cl₂.
% yield = actual yield/theoretical yield × 100 %
Actual yield = theoretical yield × (% yield/100 %) = 60.25 g × (72 %/100%) = 43 g
Answer:
- last option: none of<u> the above.</u>
Explanation:
Describing a solution as<em> concentrated</em> tells that the solution has a relative large concentration, but it is a qualitative description, not a quantitative one, so this does not tell really how concentrated the solution is. This is, the term concentrated is a kind of vague; it just lets you know that the solution is not very diluted, but, as said initially, that there is a relative large amount (concentration) of solute.
One conclusion, of course, is that <u>the solute is soluble</u>: else the solution were not concentrated.
On the other hand, the terms saturated and <em>supersaturated</em> to define a solution are specific.
A saturated solution has all the solute that certain amount of solvent can contain, at a given temperature. A <u>supersaturated solution has more solute dissolved than the saturated solution</u> at the same temperature; superstaturation is a very unstable condition.
From above, there is no way that you can conclude whether a solution is supersaturated or not from the statement that a solution is concentrated, so the answer is<u> none of the above</u>.
I believe it's about the dislodging response as Ag structures solvent salt with nitrate. For dislodging response, more receptive metal will uproot less receptive metal from the arrangement. In your question, the reactivity of the metal are positioned as takes after: Mg > Cu > Ag. Take note of that more responsive metals, that are Mg and Cu, are in the arrangement.