Answer:
f(g(-64)) = -190
Step-by-step explanation:
The functions are not well written.
Let us assume;
f(x) = x+1
g(x) = 3x+1
f(g(x)) = f(3x+1)
Replace x with 3x+1 in f(x)
f(g(x)) = (3x+1) + 1
f(g(x)) = 3x + 2
f(g(-64)) = 3(-64) + 2
f(g(-64)) = -192+2
f(g(-64)) = -190
<em>Note that the functions are assumed but same method can be employed when calculating composite functions</em>
Answer:
3ab
-------------------
(b+a)
Step-by-step explanation:
3/a - 3/b
-------------------
1/a^2 - 1/b^2
Multiply the top and bottom by a^2 b^2/ a^2/b^2 to clear the fractions
(3/a - 3/b) a^2 b^2
-------------------
(1/a^2 - 1/b^2) a^2b^2
3ab^2 - 3 a^2 b
-------------------
b^2 - a^2
Factor out 3ab on the top
3ab( b-a)
-------------------
b^2 - a^2
The bottom is the difference of squares
3ab( b-a)
-------------------
(b-a) (b+a)
Cancel like terms from the top and bottom
3ab
-------------------
(b+a)
I’m pretty sure that it is the 3 or C option.
Answer:
−
364
z
+
10
Step-by-step explanation: