Answer:
The temperature of a substance when the average kinetic energy of its particles increases and decreases when the average kinetic energy decreases.
Explanation:
Atoms and molecules are in constant motion. Kinetic energy is a form of energy, known as energy of motion. Kinetic energy is a form of energy, known as energy of motion. The kinetic energy of an object is that which is produced due to its movements, which depends on its mass (m) and speed (v).
Temperature refers to a quantity used to measure the kinetic energy of a system. That is, temperature is defined as an indicator of the average kinetic energy of the particles in a body.
So, since temperature is a measure of the speed with which they move, the higher the temperature the faster they move.
Finally, <u><em>the temperature of a substance when the average kinetic energy of its particles increases and decreases when the average kinetic energy decreases.</em></u>
1-Na
2-N
3-F
4-C
5-Ti(i guess)
6-Fe
The molar mass of the protein is 45095 g/mol.
The mass of a sample of a chemical compound divided by the quantity, or number of moles in the sample, measured in moles, is known as the molar mass of that compound.
The expression of molar mass of protein is
M₂ = (W₂/P) (RT/V)
Given;
W₂ = 1.31g
P = 4.32 torr = 5.75 X 10⁻³ bar
R = 0.083 Lbar/mol/K
T = 25°C = 298.15 K
V = 125 ml = 0.125 L
Putting all the values in the above formula
M₂= (1.31 g/5.75 X 10⁻³ bar) X (0.083 Lbar/mol/K X 2)/0.125 L)
M₂ = 45095 g/mol
Thus, the molar mass of the protein is 45095 g/mol.
Learn more about the Molar mass with the help of the given link:
brainly.com/question/22997914
#SPJ4