1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex
2 years ago
6

An amusement park ride called the Rotor debuted in 1955 in Germany. Passengers stand in the cylindrical drum of the Rotor as it

rotates around its axis. Once the Rotor reaches its operating speed, the floor drops but the riders remain pinned against the wall of the cylinder. Suppose the cylinder makes 26.0 rev/min and has a radius of 3.70 m. 1) What is the coefficient of static friction between the wall of the cylinder and the backs of the riders
Physics
1 answer:
steposvetlana [31]2 years ago
3 0

Answer:

μs = 0.36

Explanation:

  • While the drum is rotating, the riders, in order to keep in a circular movement, are accelerated towards the center of the drum.
  • This acceleration is produced by the centripetal force.
  • Now, this force is not a different type of force, is the net force acting on the riders in this direction.
  • Since the riders have their backs against the wall, and the normal force between the riders and the wall is perpendicular to the wall and aiming out of it, it is easily seen that this normal force is the same centripetal force.
  • In the vertical direction, we have two forces acting on the riders: the force of gravity (which we call weight) downward, and the friction force, that will oppose to the relative movement between the riders and the wall, going upward.
  • When this force be equal to the weight, it will have the maximum possible value, which can be written as follows:

       F_{frmax} = \mu_{s}* F_{n}  = m * g  (1)

  • where μs= coefficient of static friction (our unknown)
  • As  we have already said Fn = Fc.
  • The value of the centripetal force, is related with the angular velocity ω and the radius of the drum r, as follows:

      F_{n} = m* \omega^{2} * r  (2)

  • Replacing (2) in (1), simplifying and rearranging terms, we can solve for μs, as follows:

       \mu_{s} = \frac{g}{\omega^{2} r}  (3)

  • Prior to replace ω for its value, is convenient to convert it from rev/min to rad/sec, as follows:

       \omega = 26.0 \frac{rev}{min} * \frac{1min}{60 sec} *\frac{2*\pi rad }{1 rev} = 2.72 rad/sec (4)

  • Replacing g, ω and r in (3):
  • \mu_{s} = \frac{g}{\omega^{2} r} = \frac{9.8m/s2}{(2.72rad/sec)^{2} *3.7 m} = 0.36 (5)

You might be interested in
In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal
kramer

Explanation:

The gravitational force equation is the following:

F_G = G * \frac{m_1 m_2}{r^2} \\

Where:

G = Gravitational constant = 6.67408 * 10^{-11} m^3 kg^{-1} s^{-2}

m1 & m2 = the mass of two related objects

r = distance between the two related objects

The problem gives you everything you need to plug into the formula, except for the gravitational constant. Let me know if you need further clarification.

8 0
3 years ago
Hydrogen is the second most abundant gas in the atmosphere? True or false?
Alenkinab [10]
False as oxygen is the second most abundant and nitrogen is the most abundant at 78%.
7 0
3 years ago
You are pulling a child in a wagon. The rope handle is inclined upward at a 60∘ angle. The tension in the handle is 20 N.
dem82 [27]
  • Angle (θ) = 60°
  • Force (F) = 20 N
  • Distance (s) = 200 m
  • Therefore, work done
  • = Fs Cos θ
  • = (20 × 200 × Cos 60°) J
  • = (20 × 200 × 1/2) J
  • = (20 × 100) J
  • = 2000 J

<u>Answer</u><u>:</u>

<u>2</u><u>0</u><u>0</u><u>0</u><u> </u><u>J</u>

Hope you could get an idea from here.

Doubt clarification - use comment section.

6 0
2 years ago
Read 2 more answers
At the moment t = 0, a 24.0-v battery is connected to a 5.00-mh coil and a 6.00-ω resistor. (a) immediately thereafter, how does
agasfer [191]
At the moment the answer is Yeet
5 0
3 years ago
3. A cat pushes a 0.25-kg toy with a net force of 8 N. According to Newton's second
jek_recluse [69]
  • Mass=0.25kg
  • Force=8N

\\ \sf{:}\!\implies F=ma

\\ \sf{:}\!\implies Acceleration=\dfrac{F}{m}

\\ \sf{:}\!\implies Acceleration=\dfrac{8}{0.25}

\\ \sf{:}\!\implies Acceleration=32m/s^2

5 0
3 years ago
Other questions:
  • The temperature of a gas is increased from 125 celsius inside a rigid container. The original pressure of a gas was 1.22atm, wha
    14·1 answer
  • Suppose that the habitat of a species that once lived on land has now become covered in water. In order to survive, the species
    15·2 answers
  • Ohm’s Law<br>pls answer this photos​
    13·1 answer
  • A tunnel has a length of 50 km. A car takes 20 min to travel between the two ends of the tunnel. What is the average speed of th
    8·1 answer
  • If it took 125 seconds to complete 5 wave cycles, what is the period of the wave?
    14·1 answer
  • A shell is fired at an angle of 35° above the horizontal at a velocity of 40 m/s. (a) What is it's speed at the highest point of
    6·1 answer
  • The total electric field consists of the vector sum of two parts. One part has a magnitude of E1 = 1300 N/C and points at an ang
    10·1 answer
  • Which avtivties belongs on top of physical activity pyramid
    15·2 answers
  • Which situation would create a field like the one shown here?
    8·1 answer
  • The difference in energy between allowed oscillator states in HBr molecules is 0.330 eV. What is the oscillation frequency of th
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!