When a force acts on a body along some path, the work done is W=F*s, where W is the work done, F is the force that is doing the work on the body and s is the path. The force doing the work has to be in the same direction, or parallel, as the path. This is called positive work. If the force and the path are anti-parallel, the work is negative. So the relationship between work and force is W=F*s.
Answer:
57908 N
Explanation:
Let's first convert Dumbo's mass into kg using the given relationship: 2.2 pounds =1 kg.
Then, 13000 lbs = 13000/2.2 kg = 5909 kg
Now, let's find the force of gravity on Dumbo at the surface of the earth, which would be in magnitude equal to the normal force that the Earth's surface applies on Dumbo.
F = m * a = 5909 kg * 9.8 m/s^2 = 57908 N
<em>Anything</em> that's dropped through air is somewhat affected by air resistance. But, out of that list, the leaf and the balloon are the items that will be affected by air resistance enough so that you can plainly see it.
If you spend some time thinking about it, you can kind of understand why airplane wings and boat propellers are shaped more like leafs and balloons than like bricks and rocks.
1750 meters.
First, determine how long it takes for the kit to hit the ground. Distance over constant acceleration is:
d = 1/2 A T^2
where
d = distance
A = acceleration
T = time
Solving for T, gives
d = 1/2 A T^2
2d = A T^2
2d/A = T^2
sqrt(2d/A) = T
Substitute the known values and calculate.
sqrt(2d/A) = T
sqrt(2* 1500m / 9.8 m/s^2) = T
sqrt(3000m / 9.8 m/s^2) = T
sqrt(306.122449 s^2) = T
17.49635531 s = T
Rounding to 4 significant figures gives 17.50 seconds. Since it will take
17.50 seconds for the kit to hit the ground, the kit needs to be dropped 17.50
seconds before the plane goes overhead. So just simply multiply by the velocity.
17.50 s * 100 m/s = 1750 m