Answer:
doppler shift's formula for source and receiver moving away from each other:
<em>λ'=λ°√(1+β/1-β)</em>
Explanation:
acceleration of spaceship=α=29.4m/s²
wavelength of sodium lamp=λ°=589nm
as the spaceship is moving away from earth so wavelength of earth should increase w.r.t increasing speed until it vanishes at λ'=700nm
using doppler shift's formula:
<em>λ'=λ°√(1+β/1-β)</em>
putting the values:
700nm=589nm√(1+β/1-β)
after simplifying:
<em>β=0.17</em>
by this we can say that speed at that time is: v=0.17c
to calculate velocity at an acceleration of a=29.4m/s²
we suppose that spaceship started from rest so,
<em>v=v₀+at</em>
where v₀=0
so<em> v=at</em>
as we want to calculate t so:-
<em>t=v/a</em> v=0.17c ,c=3x10⁸ ,a=29.4m/s²
putting values:
=0.17(3x10⁸m/s)/29.4m/s²
<em>t=1.73x10⁶</em>
The magnitude of the resultant force on the balloon is 374.13 N.
The given forces from the image;
- <em>Upward force = 514 N</em>
- <em>Downward force = 267 N</em>
- <em>Eastward force = 678 N</em>
- <em>Westward force = 397 N</em>
The net vertical force on the balloon is calculated as follows;

The net horizontal force on the balloon is calculated as follows;

The magnitude of the resultant force on the balloon is calculated as follows;

Thus, the magnitude of the resultant force on the balloon is 374.13 N.
Learn more here:brainly.com/question/4404327
It means that if you had a cubic meter of water it would weigh 1000 kilograms
Yes it is. Uh huh, uh huh, shore enuff. Mmm hmm. Yeah yeah yeah. Yah Mon ! Indubitably.