The correct answer is: Option (A) 75 J
Explanation:
First, be careful with the units here. As you can see it is mentioned that there is a 50N box. It means that the weight (<em>mg</em>) of the box is given as the unit is <em>Newton</em>, not its mass (which is in kg).
As,
Potential-energy = mass * acceleration-due-to-gravity * height
PE = m*g*h --- (A)
In equation (A), mg is actually the weight of the box, which is given.
mg = 50N
h = height = 1.5m
Plug the values in equation (A):
PE = 50 * 1.5 = <em>75 J (Option A)</em>
Answer:
Energy is the ability for an object to do work.
Kinetic energy is energy which a body possesses while in motion.
Stored Energy = Potential Energy.
Speed is a measurement of how quickly something is able to move or operate.
Answer:
C. Angle of Attack.
Explanation:
The pilot must adjust the angle of attack parameter. The angle of attack of this plane to get to the desired lift coefficient.
And thus, we have
Lift = Weight
Answer: 2812500 joules
Explanation:
Mass of car = 1500kg
Velocity of car = 75mph
Kinetic energy = ?
Recall that kinetic energy is the energy possessed by a moving object, and it depends on its mass M and velocity, V
Thus, Kinetic energy = 1/2 x mv^2
= 1/2 x 1000kg x (75mph)^2
= 0.5 x 1000kg x (75mph)^2
= 500 x 5625
= 2812500 joules
Thus, the car travels with a kinetic energy of 2812500 joules
Answer:
a) t = 1.47 h b) t = 1.32 h
Explanation:
a) In this problem the plane and the wind are in the same North-South direction, whereby the vector sum is reduced to the scalar sum (ordinary). Let's calculate the total speed
v =
f -
v = 585 -32.1
v = 552.9 km / h
We use the speed ratio in uniform motion
v = x / t
t = x / v
t = 815 /552.9
t = 1.47 h
b) We repeat the calculation, but this time the wind is going in the direction of the plane
v=
f -
v 585 + 32.1
v = 617.1 km / h
t = 815 /617.1
t = 1.32 h