The half-life of the reaction is 50 minutes
Data;
- Time = 43 minutes
- Type of reaction = first order
- Amount of Completion = 45%
<h3>Reaction Constant</h3>
Let the initial concentration of the reaction be X
The reactant left = (1 - 0.45) X
= 0.55 X
= X
For a first order reaction

<h3>Half Life </h3>
The half-life of a reaction is said to be the time required for the initial amount of the reactant to reach half it's original size.

Substitute the values

The half-life of the reaction is 50 minutes
Learn more on half-life of a first order reaction here;
brainly.com/question/14936355
Reaction rates can be increased if the concentration of reactants is raised. An increase in concentration produces more collisions. The chances of an effective collision goes up with the increase in concentration. The exact relationship between reaction rate and concentration depends on the reaction "mechanism".
Sorry I don’t know but o have to answer for pionts
Answer:
low
Explanation:
We were informed in the question that the student had incorrectly recorded the mass of cup + sample as 2.20 g but inadvertently used 2.00 g in the calculations.
This error will cause a slight decrease in the mass of water and ultimately decrease the number of moles of water in the hydrate.
What i am saying is that the number of moles of water obtained in the calculation will be artificially low.
Answer:
ok ok ok ok ok ok ok ok ok ok ok ok ok ikjk
o
Explanation:
fgghhh