Given that the mass of the toy cart is 2.0 kg and and the acceleration is unknown, the normal formula would be a=f/m where a is acceleration, f is force and m is mass but the string's breaking strength is 40n so I think the formula in this case will be f is greater than m*a
40 is greater than 2a
40 is greater than 2a
40/2 is greater than 2a/2
20m/s² is greater than a
Therefore the maximum speed the toy cart should have should be less than 20m/s²
Step by step solution :
standard deviation is given by :

where,
is standard deviation
is mean of given data
n is number of observations
From the above data, 
Now, if
, then 
If
, then 
if
, then 
If
, then 
If
, then 
so, 



No, Joe's value does not agree with the accepted value of 25.9 seconds. This shows a lots of errors.
Well if the ship was in space their shouldn’t be a loud bang. Because you can’t hear anything in space
Answer:
0.0133A
Explanation:
Since we have two sections, for the Inductor region there would be a current
. In the case of resistance 2, it will cross a current
Defined this we proceed to obtain our equations,
For
,


For
,


The current in the entire battery is equivalent to,


Our values are,




Replacing in the current for t= 0.4m/s


