The easiest way I know to explain it is this:
-- Take a flashlight and a ball into a dark room.
-- Turn on the flashlight and point it at the ball.
-- Half of the ball is lighted up by the flashlight, and the other half is dark.
-- There is no way you can turn or twist the ball to make more or less
than 50% of it lighted up and more or less than 50% of it dark.
<em>Everything</em> in the solar system ... as long as it's shaped like a ball ... is
half illuminated by the sun and half dark.
<span>3.92 m/s^2
Assuming that the local gravitational acceleration is 9.8 m/s^2, then the maximum acceleration that the truck can have is the coefficient of static friction multiplied by the local gravitational acceleration, so
0.4 * 9.8 m/s^2 = 3.92 m/s^2
If you want the more complicated answer, the normal force that the crate exerts is it's mass times the local gravitational acceleration, so
20.0 kg * 9.8 m/s^2 = 196 kg*m/s^2 = 196 N
Multiply by the coefficient of static friction, giving
196 N * 0.4 = 78.4 N
So we need to apply 78.4 N of force to start the crate moving. Let's divide by the crate's mass
78.4 N / 20.0 kg
= 78.4 kg*m/s^2 / 20.0 kg
= 3.92 m/s^2
And you get the same result.</span>