Answer:
2. the volume of the square are the same
Answer:
Lifting force, F = 21240 N
Explanation:
It is given that,
Mass of the helicopter, m = 1800 kg
It rises with an upward acceleration of 2 m/s². We need to find the lifting force supplied by its rotating blades. It is given by :
F = mg + ma
Where
mg is its weight
and "ma" is an additional acceleration when it is moving upwards.
So, 
F = 21240 N
So, the lifting force supplied by its rotating blades is 21240 N. Hence, this is the required solution.
Answer:
The proton gradient produced by proton pumping during the electron transport chain is used to synthesize ATP. Protons flow down their concentration gradient into the matrix through the membrane protein ATP synthase, causing it to spin (like a water wheel) and catalyze conversion of ADP to ATP.
Explanation:
Answer:
66.4 m
Explanation:
To solve the problem, we can use the length contraction formula, which states that the length observed in the reference frame moving with the object (the rocket) is given by

where
is the proper length (the length measured from an observer at rest)
v is the speed of the object (the rocket)
c is the speed of light
Here we know
v = 0.85c
L = 35.0 m
So we can re-arrange the equation to find the length of the rocket at rest:

Answer:
2.48 m/s
Explanation:
We can use the kinematic equation,
s = ut +½at²
Where
s = displacement
u = initial velocity
t = time taken
a = acceleration
Using the equation in vertical direction,
321 = 0×t +½×g×t², u = 0 because initial vertical velocity is 0
We get t = 8.01 s
Using the equation in the horizontal direction,
52 = u×8.01 +½×0×(8.01)²,. a = 0 because no unbalanced force act on object in that direction
So u = 2.48 m/s