The inequality can be:

Now you divide both sides by 150 to get the #of boxes.

Lastly, x is 20. So the maximum amount of boxes that the freight elevator can hold is 20
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2
Answer:
5/3 or 10/12
Step-by-step explanation:
She earns 32.40 for working 4 hrs.....32.40/4 = 8.10 per hr
y = 8.10h...where y is the amount of money earned and h is the number of hrs worked
Hey there!!
The graph B is not a function as it doesn't pass the vertical line test, as there are two x values repeating.
We do not want value x repeating, if it does, it is not considered to be a function anymore.
Hope my answer helps!