Answer:
2f
Explanation:
The formula for the object - image relationship of thin lens is given as;
1/s + 1/s' = 1/f
Where;
s is object distance from lens
s' is the image distance from the lens
f is the focal length of the lens
Total distance of the object and image from the lens is given as;
d = s + s'
We earlier said that; 1/s + 1/s' = 1/f
Making s' the subject, we have;
s' = sf/(s - f)
Since d = s + s'
Thus;
d = s + (sf/(s - f))
Expanding this, we have;
d = s²/(s - f)
The derivative of this with respect to d gives;
d(d(s))/ds = (2s/(s - f)) - s²/(s - f)²
Equating to zero, we have;
(2s/(s - f)) - s²/(s - f)² = 0
(2s/(s - f)) = s²/(s - f)²
Thus;
2s = s²/(s - f)
s² = 2s(s - f)
s² = 2s² - 2sf
2s² - s² = 2sf
s² = 2sf
s = 2f
<h3>Solution for the above question : -</h3>
Ohm's law states that :
the terms used are :
let's solve for electric current :

Answer:
(a) The ratio of the pressure amplitude of the waves is 43.21
(b) The ratio of the intensities of the waves is 0.000535
Explanation:
Given;
density of gas,
= 2.27 kg/m³
density of liquid,
= 972 kg/m³
speed of sound in gas,
= 376 m/s
speed of sound in liquid,
= 1640 m/s
The of the sound wave is given by;

Where;
is the pressure amplitude

(b) when the pressure amplitudes are equal, the ratio of the intensities is given as;

The battery will be full still a 8v bc of no time comparison