Answer:
Sound vibrations travel in a wave pattern, and we call these vibrations sound waves. Sound waves move by vibrating objects and these objects vibrate other surrounding objects, carrying the sound along. ... Sound can move through the air, water, or solids, as long as there are particles to bounce off of.
Explanation:
 
        
                    
             
        
        
        
Answer:
A) The resultant force is 43.4 [N]
B) The movement of the heavy crate is going to the right and in the negative direction on the y-axis
Explanation:
We need to make a sketch of the different forces acting on the heavy crate.
In the attached image we can see the forces and the sum of the vector with their respective angles.
Forces in the X-axis

Forces in the y-axis
![FDiony=0[N]\\Fshirley= 16.5*sin(30)=8.25[N]\\Fjoany=19.5*sin(60)=16.88 [N]\\\\Forcesy=0+8.25-16.88= -8.63[N]](https://tex.z-dn.net/?f=FDiony%3D0%5BN%5D%5C%5CFshirley%3D%2016.5%2Asin%2830%29%3D8.25%5BN%5D%5C%5CFjoany%3D19.5%2Asin%2860%29%3D16.88%20%5BN%5D%5C%5C%5C%5CForcesy%3D0%2B8.25-16.88%3D%20-8.63%5BN%5D)
Using the Pythagorean theorem

The movement of the heavy crate is going to the right and in the negative direction on the y-axis, this can be easily seen in the graphical sum of vectors.
 
        
             
        
        
        
Valleys, waterfalls, flood plains, meanders, and oxbow lakes 
        
             
        
        
        
Distance is the total length covered = 2m + 3m = 5m
Displacement is his distance from original position.
Displacement =  2m + (-3)m.               Representing the 3m walked back as -3.
Displacement = 2m - 3m = -1m.
So his displacement  is 1m behind his original starting point.