The solution for this problem is through this formula:Ø = w1 t + 1/2 ã t^2
where:Ø - angular displacement w1 - initial angular velocity t - time ã - angular acceleration
128 = w1 x 4 + ½ x 4.5 x 5^2 128 = 4w1 + 56.254w1 = -128 + 56.25 4w1 = 71.75w1 = 71.75/4
w1 = 17.94 or 18 rad s^-1
w1 = wo + ãt
w1 - final angular velocity
wo - initial angular velocity
18 = 0 + 4.5t t = 4 s
Answer:
Let's start by understanding what exactly a scientific question is. A scientific question is a question that may lead to a hypothesis and help us in answering (or figuring out) the reason for some observation. A good scientific question has certain characteristics. It should have some answers (real answers), should be testable.
Here's examples of a few:
Why is that a star?
or
What is that star made of?
Hope this can lead you to the answer you're looking for at least!!
The potential energy that the ball has at the top of the tower is its kinetic energy when it hits the ground. The second ball has more potential energy at the top, because you did more work on it to carry it up there. So it has more KE at the bottom. (A)
1. Learners are engaged by scientifically oriented questions.
2. Learners give priority to evidence, allowing them to develop and
evaluate explanations that address scientifically-oriented questions.
3. earners formulate explanations form evidence to address scientifically
oriented question
4. Learners evaluate their explanations in light of alternative explanations,
particularly those reflecting scientific understanding.
5. Learners communicate and justify their proposed explanations.
Answer:
it relates to the light propensity to travel over one straight line without having any interference in its trajectory
Explanation: