The first one is dependent variable
<span />
Answer:
the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Explanation:
To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:

Where,
m = mass
m(i) = mass at inlet
m(o)= Mass at outlet
h(i)= Enthalpy at inlet
h(o)= Enthalpy at outlet
W = Work done
Q = Heat transferred
v(i) = Velocity at inlet
v(o)= Velocity at outlet
Z(i)= Height at inlet
Z(o)= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects

Using the relation T-P we can find the final temperature:


From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
The scientist is likely to be studying kinematics.
Kinematics is the branch of science, specifically physics, which is concerned with the motion of objects without reference to the forces that induce this motion. An example of kinematics is studying the change in velocity of an object over time or the distance covered by an object in a specified amount of time.
Answer:
All the different habitats in our world make up biodiversity
Explanation:
Biodiversity is the sum of different species in life. With different species, it's diverse because it's more than one type.
Hope this helped!