The period of the orbit would increase as well
Explanation:
We can answer this question by applying Kepler's third law, which states that:
"The square of the orbital period of a planet around the Sun is proportional to the cube of the semi-major axis of its orbit"
Mathematically,

Where
T is the orbital period
a is the semi-major axis of the orbit
In this problem, the question asks what happens if the distance of the Earth from the Sun increases. Increasing this distance means increasing the semi-major axis of the orbit,
: but as we saw from the previous equation, the orbital period of the Earth is proportional to
, therefore as
increases, T increases as well.
Therefore, the period of the orbit would increase.
Learn more about Kepler's third law:
brainly.com/question/11168300
#LearnwithBrainly
I would assume air resistance is negligible and so the acceleration of the package would be approximately 9.81 m/s².
Taking downwards as positive, use v²=u²+2as.
v²=(-2)²+2(9.81)(14)
v=16.7 m/s
Mass of object/source
Gravity
Fg=mg
Answer:

Explanation:
We are given that







We have to find the exit temperature.
By steady energy flow equation



Substitute the values




Answer:
Resultant force, R = 10 N
Explanation:
It is given that,
Force acting along +x direction, 
Force acting along +y direction, 
Both the forces are acting on a point object located at the origin. Let the resultant force of the object is given by R. So,

Here 


R = 10 N
So, the resultant force on the object is 10 N. Hence, this is the required solution.