1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry_Shevchenko [17]
3 years ago
14

I need so much help 50 points!!!!!!complete the graph

Physics
1 answer:
motikmotik3 years ago
6 0

<u>First Symbol </u>: Cobalt (Co)

Its Group Number - 9

Its Period Number - 4

Its Family Name - Transition Metal

<u>Second Symbol</u> : Silicon (Si)

Its Group Number - 14

Its Period Number - 2

Its Family Name - Semiconductor

<u>Third Symbol</u> : Astatine (At)

Its Group Number - 17

Its Period Number - 6

Its Family Name - Halogen

<u>Fourth Symbol </u>: Magnesium (Mg)

Its Group Number - 2

Its Period Number - 3

Its Family Name - Alkaline Earth Metal

<u>Fifth Symbol</u> : Xenon (Xe)

Its Group Number - 18

Its Period Number - 5

Its Family Name - Noble Gas

You might be interested in
A Tennis ball falls from a height 40m above the ground the ball rebounds
worty [1.4K]

If the ball is dropped with no initial velocity, then its velocity <em>v</em> at time <em>t</em> before it hits the ground is

<em>v</em> = -<em>g t</em>

where <em>g</em> = 9.80 m/s² is the magnitude of acceleration due to gravity.

Its height <em>y</em> is

<em>y</em> = 40 m - 1/2 <em>g</em> <em>t</em>²

The ball is dropped from a 40 m height, so that it takes

0 = 40 m - 1/2 <em>g</em> <em>t</em>²

==>  <em>t</em> = √(80/<em>g</em>) s ≈ 2.86 s

for it to reach the ground, after which time it attains a velocity of

<em>v</em> = -<em>g</em> (√(80/<em>g</em>) s)

==>  <em>v</em> = -√(80<em>g</em>) m/s ≈ -28.0 m/s

During the next bounce, the ball's speed is halved, so its height is given by

<em>y</em> = (14 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

Solve <em>y</em> = 0 for <em>t</em> to see how long it's airborne during this bounce:

0 = (14 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

0 = <em>t</em> (14 m/s - 1/2 <em>g</em> <em>t</em>)

==>  <em>t</em> = 28/<em>g</em> s ≈ 2.86 s

So the ball completes 2 bounces within approximately 5.72 s, which means that after 5 s the ball has a height of

<em>y</em> = (14 m/s) (5 s - 2.86 s) - 1/2 <em>g</em> (5 s - 2.86 s)²

==>  (i) <em>y</em> ≈ 7.5 m

(ii) The ball will technically keep bouncing forever, since the speed of the ball is only getting halved each time it bounces. But <em>y</em> will converge to 0 as <em>t</em> gets arbitrarily larger. We can't realistically answer this question without being given some threshold for deciding when the ball is perfectly still.

During the first bounce, the ball starts with velocity 14 m/s, so the second bounce begins with 7 m/s, and the third with 3.5 m/s. The ball's height during this bounce is

<em>y</em> = (3.5 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

Solve <em>y</em> = 0 for <em>t</em> :

0 = (3.5 m/s) <em>t</em> - 1/2 <em>g t</em>²

0 = <em>t</em> (3.5 m/s - 1/2 <em>g</em> <em>t</em>)

==>  (iii) <em>t</em> = 7/<em>g</em> m/s ≈ 0.714 s

As we showed earlier, the ball is in the air for 2.86 s before hitting the ground for the first time, then in the air for another 2.86 s (total 5.72 s) before bouncing a second time. At the point, the ball starts with an initial velocity of 7 m/s, so its velocity at time <em>t</em> after 5.72 s (but before reaching the ground again) would be

<em>v</em> = 7 m/s - <em>g t</em>

At 6 s, the ball has velocity

(iv) <em>v</em> = 7 m/s - <em>g</em> (6 s - 5.72 s) ≈ 4.26 m/s

4 0
4 years ago
Suppose that you are swimming in a river while a friend watches from the shore. In calm water, you swim at a speed of 1.25 m/s .
aliya0001 [1]

Answer: The observing friend will the swimmer moving at a speed of 0.25 m/s.

Explanation:

  • Let <em>S</em> be the speed of the swimmer, given as 1.25 m/s
  • Let S_{0} be the speed of the river's current given as 1.00 m/s.

  • Note that this speed is the magnitude of the velocity which is a vector quantity.
  • The direction of the swimmer is upstream.

Hence the resultant velocity is given as, S_{R} = S — S 0S_{0}

S_{R} = 1.25 — 1

S_{R} = 0.25 m/s.

Therefore, the observing friend will see the swimmer moving at a speed of 0.25 m/s due to resistance produced by the current of the river.

6 0
3 years ago
What was also changed in the "Levers" lab when the position of the fulcrum was changed?
erastova [34]

Effort force

Explanation:

When the potion of fulcrum and weight is changed, the mechanical advantage changes.Increasing the distance between the fulcrum and the effort, there is a proportion increase in effort required to lift a load.The ration of the distance from the fulcrum to the position of input and output application gives the mechanical advantage in levers when losses due to friction are not considered.

Learn More

Mechanical advantage in Levers : brainly.com/question/11600677

Keywords : Levers, fulcrum, position

#LearnwithBrainly

4 0
3 years ago
Which scientist saw the atom as a positively charged sphere with negative particles ( electrons ) embedded within?
Zigmanuir [339]
Ernest Rutherford is the answer you are looking for my friend.
5 0
3 years ago
Read 2 more answers
In which parts of a plant would u expect phototropism to occur?
Lubov Fominskaja [6]

Answer:

chloroplasts

Explanation:

Most plant shoots exhibit positive phototropism, and rearrange their chloroplasts in the leaves to maximize photosynthetic energy and promote growth.

3 0
3 years ago
Read 2 more answers
Other questions:
  • An object is at rest on an inclined plane. In which direction does the static friction force act?
    14·1 answer
  • A single point charge q is located at the center of both an imaginary cube and an imaginary sphere. How does the electric flux t
    7·1 answer
  • What is a controlled experiment? none of the variables are changed all variables are kept constant two variables are changed at
    8·1 answer
  • Two red blood cells each have a mass of 9.0 × 10 − 14 kg and carry a negative charge spread uniformly over their surfaces. The r
    9·1 answer
  • In which direction does the sun appear to move across the sky?
    10·2 answers
  • Which single force acts on an object in freefall?
    15·2 answers
  • A.
    15·2 answers
  • What is a tension force
    15·1 answer
  • Calculate the height from from which a body is released from rest if its velocity just before hitting the ground is30m\s
    13·1 answer
  • Calculate the frequency of the wave shown below.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!