This is a trick question:
The Doppler effect states that as you move closer to the source, the frequency of light(or sound/waves in general) increases, but technically the speed of light is always the same speed, even if you are moving at the speed of light.
Thus, the answer would be something along the lines of <u>don't change</u>.
Answer:
the lowest possible frequency of the emitted tone is 404.79 Hz
Explanation:
Given the data in the question;
S₁ ← 5.50 m → L
↑
2.20 m
↓
S₂
We know that, the condition for destructive interference is;
Δr = ( 2m +
) × λ
where m = 0, 1, 2, 3 .......
Path difference between the two sound waves from the two speakers is;
Δr = √( 5.50² + 2.20² ) - 5.50
Δr = 5.92368 - 5.50
Δr = 0.42368 m
v = f × λ
f = ( 2m +
)v / Δr
m = 0, 1, 2, 3, ....
Now, for the lowest possible frequency, let m be 0
so
f = ( 0 +
)v / Δr
f =
(v) / Δr
we know that speed of sound in air v = 343 m/s
so we substitute
f =
(343) / 0.42368
f = 171.5 / 0.42368
f = 404.79 Hz
Therefore, the lowest possible frequency of the emitted tone is 404.79 Hz
Resistivity of nichrome is high.
Answer:
Mass is how much matter an object contains. Mass and weight are different measurements, although they may seem similar. Mass is measured by comparing one object to another object of known mass. Grams and kilograms are units we use to measure mass.