1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
charle [14.2K]
2 years ago
14

Henrietta did an experiment. She started out with 800 bacteria cells. She found that the growth rate of the bacteria cells was 3

.2%. Sketch the graph that represents the situation. Label the y-intercept and the point that represents the projected bacteria population 35 h from the time Henrietta started the experiment. I need help asap please
Mathematics
1 answer:
Gnom [1K]2 years ago
5 0

Answer:

  • See below

Step-by-step explanation:

<u>Given</u>

  • Initial number of bacteria = 800
  • Growth rate = 3.2% = 1.032 times

<u>Required equation:</u>

  • B(t) = 800(1.032)^t, where B- number of bacteria, t- time in hours

<u>The y-intercept is:</u>

  • B(0) = 800*1.032^0 = 800
  • The point (0, 800)

<u>Bacteria population 35 in hours:</u>

  • B(35) = 800*1.032^35 = 2409
  • The point (35, 2409)

You might be interested in
Please help me! i have no idea how to do this.
Sauron [17]
20:30 so it becomes 2:3 as a fraction it would be 2/3. a fraction is basically a ratio.
4 0
3 years ago
9 + x - 3 = 4x - 3 <br><br> Find x, please explain asap
Vesnalui [34]

Answer:

x = 3

Explanation:

To simplify this equation, don't worry about the -3, since there is one on both sides. Therefore, they cancel out.

So, 9 + x = 4x

When you plug 3 in for x, it becomes:

9 + 3 = 4 x 3

12 = 12

This equation is true, therefore, x is your answer!

5 0
2 years ago
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Whats the answer to that question?
gavmur [86]

Answer:

-0.9090... can be written as \frac{10}{11}.

Explanation:

Any <em>repeating </em>decimal can be written as a fraction by dividing the section of the pattern to be repeated <em>by </em>9's.

We can start by listing out

0.909090... = 9/10 + 0/100 + 9/1000 + 0/10000 + 9/100000 + 0/1000000 + ...

Now. we let this series be equal to x, that is

x = 9/10 + 0/100 + 9/1000 + 0/10000 + 9/100000 + 0/1000000 + ...

Now, we'll multiply both sides by 100 .

100x = 90 + 0 + 9/10 + 0/100 + 9/1000 + 0/10000 + ...

Then, subtract the 1st equation from the second like so:

100x = 90 + 0 + 9/10 + 0/100 + 9/1000 + 0/10000 + 9/100000 + 0/1000000 + ...

-x = - 9/10 - 0/100 - 9/1000 - 0/10000 - 9/100000 - 0/1000000 - ...

And we end up with this:

99x=90

Finally, we divide both sides by 99 in order to isolate x and get the fraction we're looking for.

x=\frac{90}{99}

Which can be reduced and simplified to

x=\frac{10}{11}

Hope this helps!

4 0
3 years ago
Which of the follow if best describes AOR
Natali5045456 [20]

Answer:

C

Step-by-step explanation:

A major arc is an arc that is greater than 180 degrees.

A minor arc is an arc less than 180 degrees.

An acute angle is an angle less than 90 degrees.

A central angle is the angle created in the center of a circle with 2 sides being the radius.

<em>Thus, we can see in the figure that we are talking about the angle so we can eliminate major arc and minor arc.</em>

<em>Now, we clearly see that the angle is greater than 90 degree so it cannot be acute angle.</em>

<em />

The correct answer is central angle as it goes with the definition.

6 0
2 years ago
Other questions:
  • Hue is arranging chairs. She can form 5 rows of a given length with 2 chairs left over, or 9 rows of that
    10·1 answer
  • Multiply (6 -7i)(3 - 6i)
    9·1 answer
  • Samantha is employed full-time and earn 6900per month . what is her equivalent weekly salary
    5·1 answer
  • .5% of what number is 3?
    12·2 answers
  • What is the first step when adding the fractions 2/5+7/10
    5·2 answers
  • 2(3c + 3) &lt; 6c + 9
    5·1 answer
  • What's 10% off of $124.50
    10·2 answers
  • Higher Order Thinking You have two different
    5·1 answer
  • Classify the statement as an example of classical probability, empirical probability, or subjective probability. In California's
    8·1 answer
  • 5(2x1) + 2 = 5(2x + 3) - 18
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!