Answer:
4.99 mg of vitamin C are in the beaker.
Explanation:
Given that,
Weight of vitamin = 0.0499 g
Molar mass = 176.124 g/mol
Weight of water = 100.0 ml
We need to calculate the mg of vitamin C in the beaker
We dissolve 0.0499 g vitamin C in water to from 100.0 ml solution.
100 ml solution contain 49.9 mg vitamin C
Now, we take 10 ml of this vitamin C solution in breaker
Since, 100 ml solution =49.9 mg vitamin C
Therefore,


Hence, 4.99 mg of vitamin C are in the beaker.
Question:
Consider a sample of helium gas in a container fitted with a piston as pictured below. The piston is frictionless, but has a mass of 10.0 kg. How many of the following processes will cause the piston to move away from the base and decrease the pressure of the gas? Assume ideal behavior.
I. Heating the helium. II.
II. toRemoving some of the helium from the container.
III. Turning the container on its side.
IV. Decreasing the pressure outside the container.
a) 0
b) 1
c) 2
d) 3
e) 4
Answer:
Only one process will cause the piston to move which is
i) Heating the helium
Explanation:
When helium is heated it becomes less dense or lighter. Heating the helium will cause an increase in volume which will make the piston to move away from the base. When the volume finishes increasing, the piston will stop moving which in turn will make the forces on both sides of the piston balanced, so the pressure inside will balance the weight of the piston and that of the atmosphere. From that we can see that there has been a pressure change as a result of heating.
Answer:
the period T of whole motion should be twice the value for half at he bottom so T is 0.2sec.
w is angular frequency
formula:2π/T
now k is spring constant
F/R-->mw²
putting values:70*(2π/0.2)²
=4.9x10⁶
so we can say that SHM is not affected by the amplitude of the bounce.
Atoms are made of neutrons, electrons and a proton.