Answer:
No 1 is fission
while no 2 is fusion
Fission is splitting on nucleus while fusion is forming heavier nucleus with nuclei
<span>C2Br2
First, we need to determine how many moles of the gas we have. For that, we'll use the Ideal Gas Law which is
PV = nRT
where
P = pressure (1.10 atm = 111458 Pa)
V = volume (10.0 ml = 0.0000100 m^3)
n = number of moles
R = Ideal gas constant (8.3144598 (m^3 Pa)/(K mol) )
T = Absolute temperature
Solving for n, we get
PV/(RT) = n
Now substituting our known values into the formula.
(111458 Pa * 0.0000100 m^3) / (288.5 K * 8.3144598 (m^3 Pa)/(K mol))
= (1.11458/2398.721652) mol
= 0.000464656 mol
Now let's calculate the empirical formula for this compound.
Atomic weight carbon = 12.0107
Atomic weight bromine = 79.904
Relative moles carbon = 13.068 / 12.0107 = 1.08802984
Relative moles bromine = 86.932 / 79.904 = 1.087955547
So the relative number of atoms of the two elements is
1.08802984 : 1.087955547
After dividing all numbers by the smallest, the ratio becomes
1.000068287 : 1
Which is close enough to 1:1 for me to consider the empirical formula to be CBr
Now calculate the molar mass of CBr
12.0107 + 79.904 = 91.9147
Finally, let's determine if the compound is actually CBr, or something like C2Br2, or some other multiple. Using the molar mass of CBr, multiply by the number of moles and see if the result matches the mass of the gas. So
91.9147 g/mol * 0.000464656 mol = 0.042708701 g
0.0427087 g is a lot smaller than 0.08541 g. So the compound isn't exactly CBr. Let's divide them to see what the factor is.
0.08541 / 0.0427087 = 1.99982673
1.99982673 is close enough to 2 to within the number of significant digits we have for me to claim that the formula for the unknown gas isn't CBr, but instead is C2Br2.</span>
Answer: 4 valence electrons, Silicon, Si, 14, 28.0855, 14
Explanation:
Answer:
Round to the number of significant figures in the original question. However, if you're going to proceed with further calculations using this mass, it's best not to round, as rounding will cause your answer to be less precise.
Explanation:
Answer:
The majority of the weight in an atom is found in the nucleus.
Explanation:
The protons and neutrons that make up the nucleus of the atom may take up a tiny amount of space in comparison to the rest of the atom, but they are far more dense than the electrons that orbit the nucleus.