The correct option is (b)
NaNH2 is an effective base. It can be a good nucleophile in the few situations where its strong basicity does not have negative side effects. It is employed in elimination reactions as well as the deprotonation of weak acids.Alkynes, alcohols, and a variety of other functional groups with acidic protons, such as esters and ketones, will all be deprotonated by NaNH2, a powerful base.Alkynes are deprotonated with NaNH2 to produce what are known as "acetylide" ions. These ions are powerful nucleophiles that can react with alkyl halides to create carbon-carbon bonds and add to carbonyls in an addition reaction.Acid/base and nucleophilic substitution are the two types of reactions.Using the right base, terminal alkynes can be deprotonated to produce a carbanion.A good C is the acetylide carbanion.The acetylide carbanion can undergo nucleophilic substitution reactions because it is a potent C nucleophile. (often SN2) with 1 or 2 alkyl halides with electrophilic C to create an internal alkyne (Cl, Br, or I).Elimination is more likely to occur with 3-alkyl halides.It is possible to swap either one or both of the terminal H atoms in ethylene (acetylene) to create monosubstituted (R-C-C-H) and symmetrical (R = R') or unsymmetrical (R not equal to R') disubstituted alkynes (R-C-C-R').
Learn more about NANH2 here :-
brainly.com/question/12601787
#SPJ4
Answer:
8.354 nanometers
Explanation:
To treat a diffusive process in function of time and distance we need to solve 2nd Ficks Law. This a partial differential equation, with certain condition the solution looks like this:

Where Cs is the concentration in the surface of the solid
Cx is the concentration at certain deep X
Co is the initial concentration of solute in the solid
and erf is the error function
Then we solve right side,

And we need to look up the inverse error function of 0.001964 resulting in: 0.00174055
Then we solve for x:

Answer:
find the answer elsewhere
Explanation:
The water cycle ...........