Molarity = number of moles / volume in liters solution
Answer (3)
hope this helps!
Answer:
Less
Explanation:
Since [Cu(NH3)4]2+ and [Cu(H2O)6]2+ are Octahedral Complexes the transitions between d-levels explain the majority of the absorbances seen in those chemical compounds. The difference in energy between d-levels is known as ΔOh (ligand-field splitting parameter) and it depends on several factors:
- The nature of the ligand: A spectrochemical series is a list of ligands ordered on ligand strength. With a higher strength the ΔOh will be higher and thus it requires a higher energy light to make the transition.
- The oxidation state of the metal: Higher oxidation states will strength the ΔOh because of the higher electrostatic attraction between the metal and the ligand
A partial spectrochemical series listing of ligands from small Δ to large Δ:
I− < Br− < S2− < Cl− < N3− < F−< NCO− < OH− < C2O42− < H2O < CH3CN < NH3 < NO2− < PPh3 < CN− < CO
Then NH3 makes the ΔOh higher and it requires a higher energy light to make the transition, which means a shorter wavelength.
Answer:
Electrical Energy
Explanation:
There are a variety of chemical and mechanical devices that are called batteries, although they operate on different physical principles. A battery for the purposes of this explanation will be a device that can store energy in a chemical form and convert that stored chemical energy into electrical energy when needed.
Yes, they can be separated by using a funnel. In the separating funnel, they are kept for resting. After they are separated they are filtered one by one.
Ok so First of all we start with the fire. The fire gives off radiation because you can feel the heat through space. The fire also gives of conduction because you put the hotdog on the fire to cook it, and the hotdog will give off steam when it is hot causing it to give of Convection.
There is how cooking a hotdog over a fire uses all three heat transfer