Answer:
A. 0.0655 mol/L.
B. PbBr2.
C. Pb2+(aq) + Br- --> PbBr2(s).
Explanation:
Balanced equation of the reaction:
Pb(NO3)2(aq) + 2NaBr(aq) --> PbBr2(s) + 2NaNO3(aq)
A.
Number of moles
PbBr2
Molar mass = 207 + (80*2)
= 367 g/mol.
Moles = mass/molar mass
= 3.006/367
= 0.00819 mol.
Since 2 moles of NaBr reacted to form 1 mole of PbBr2. Therefore, moles of NaBr = 2*0.00819
= 0.01638 moles of NaBr.
Since, the ionic equation is
NaBr(aq) --> Na+(aq) + Br-(aq)
Since 1 moles of NaBr dissociation in solution to give 1 mole of Br-
Therefore, molar concentration of Br-
= 0.0164/0.25 L
= 0.0655 mol/L.
B.
PbBr2
C.
Pb(NO3)2(aq)--> Pb2+(aq) + 2No3^2-(aq)
2NaBr(aq) --> 2Na+(aq) + 2Br-(aq)
Net ionic equation:
Pb2+(aq) + 2Br- --> PbBr2(s)
Answer:
The initial E° for the second cell is the same as for the first cell.
Explanation:
Because the overall chemical reaction that occurs in the cell does not change.
Answer:
A. 0.15 M NaOH, and
E. 0.15 M HNO3
Explanation:
A buffer solution contains a conjugate acid-base pair with both the acid and the base in reasonable concentrations.
NaOH and HNO3 is an acid base pair with relatively equal concentrations. So, they would most likely make a buffer solution.
Answer:
Emission spectra may be used in studying stars in order to determine what atoms makeup the individual star produces, due to the fact that each atom’s emission spectra biunique, one can observe the spectra emitted by the star and identify the atoms that are released by the light the star produces.
Remark
The given thing on the right is a positron. The mass for these subatomic particles is considered to be 0. It's atomic number is 1 which means it is a blood relative of a proton.
So essentially what happens is that X is one space to the left on the periodic table. But let's solve this a little bit more formally.
Solution

y stays the same at 147. It is z that changes.
65 = z + 1 Subtract 1 from both sides.
64 = z
So the chemical with 64 as its position on the periodic table is
Gadolinium and the answer is C