1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesna [10]
2 years ago
12

Which unit rate is equivalent to 19 miles per gallon?

Mathematics
1 answer:
statuscvo [17]2 years ago
7 0

Answer:

B

Step-by-step explanation:

57 over three means

\frac{57}{3}

It is the same as asking how many times does 3 go into 57, or how many miles is their per one gallon.

57 divided by 3 equals 19, so B would be the correct answer.

You might be interested in
$1,000, 5%, 2 years of simple interest paid to the nearest cent
yawa3891 [41]
Using the formula for simple interest
(1000 X 5 X 2)/100
the answer is $100 but to the nearest cent it is 10000cents
7 0
3 years ago
Simplify 3√225x^2y^4
vlada-n [284]

Answer:

45X2y4

Step-by-step explanation:

3√225X2y4

Simplify to

45X2y4

=45X2y4

7 0
2 years ago
The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si
natta225 [31]

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

6 0
3 years ago
Find the least common denominator for these fractions.
Elenna [48]

Answer:

15

Step-by-step explanation:

7 0
2 years ago
Determine the ratio of
lawyer [7]
To solve this you would divide until you can’t. I recommend staying in whole numbers:) I always divide by twos because I think it’s more efficient! 4 divided by 2 is 2 and 30 divided by 2 is 15 sooo (2 hours to 15) hope this helped!
5 0
2 years ago
Other questions:
  • Garrett has 15 comic books. Dana has c times as many comic books as Garrett. Write an expression that shows how many comic books
    13·1 answer
  • Beth ran a 400 meter
    8·1 answer
  • )Adam paid $76.25 for renting a bicycle for 5 hours. What was the rate per hour for renting the bicycle? (Input only numeric val
    11·2 answers
  • Find the value for b.<br> 3x^2– X – 10 = 0<br> Entor the correct answer
    7·2 answers
  • Plans for a new park call for gardens directly across the sidewalk from each other to be congruent. This computer printout shows
    11·1 answer
  • The sum of two numbers is 58. The larger number is 20 more than the smaller number. What are the numbers
    5·1 answer
  • Brandon buys a radio for $45.85 In a state where the sales tax is 7%.​
    9·2 answers
  • I WILL GIVE BRAINLIEST PLS HELP PLS PLS PLS
    14·2 answers
  • 8. The local radio station surveyed listeners and asked about their favorite type of music. The results showed
    7·2 answers
  • The total payment for an item is $79.55. If there is a 7.5% sales tax, what is the base price?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!