Hmm a number as. a decimal is 1/2=0.50
Answer:to find the equivalent positive angle of a negative angle, just add 360 to it until it becomes positive and is between 0 and 360 degrees. -110 + 360 = 250. 250 degree angle and -110 degree angle are coterminal
Step-by-step explanation:to find the equivalent positive angle of a negative angle, just add 360 to it until it becomes positive and is between 0 and 360 degrees. -110 + 360 = 250. 250 degree angle and -110 degree angle are coterminal
Answer:
x = -3 and x = 1/2
Step-by-step explanation:
To find the solutions to
2x² + 5x - 3 = 0
we can use the quadratic formula, as follows:
![x = \frac{-b \pm \sqrt{b^2- 4(a)(c)}}{2(a)}](https://tex.z-dn.net/?f=%20x%20%3D%20%5Cfrac%7B-b%20%5Cpm%20%5Csqrt%7Bb%5E2-%204%28a%29%28c%29%7D%7D%7B2%28a%29%7D%20)
![x = \frac{-5 \pm \sqrt{5^2- 4(2)(-3)}}{2(2)}](https://tex.z-dn.net/?f=%20x%20%3D%20%5Cfrac%7B-5%20%5Cpm%20%5Csqrt%7B5%5E2-%204%282%29%28-3%29%7D%7D%7B2%282%29%7D%20)
![x = \frac{-5 \pm 7}{4}](https://tex.z-dn.net/?f=%20x%20%3D%20%5Cfrac%7B-5%20%5Cpm%207%7D%7B4%7D%20)
![x_1 = \frac{-5 + 7}{4}](https://tex.z-dn.net/?f=%20x_1%20%3D%20%5Cfrac%7B-5%20%2B%207%7D%7B4%7D%20)
![x_1 = 0.5](https://tex.z-dn.net/?f=%20x_1%20%3D%200.5%20)
![x_2 = \frac{-5 - 7}{4}](https://tex.z-dn.net/?f=%20x_2%20%3D%20%5Cfrac%7B-5%20-%207%7D%7B4%7D%20)
![x_2 = -3](https://tex.z-dn.net/?f=%20x_2%20%3D%20-3%20)
Answer:
3.) 0.894
Step-by-step explanation:
✔️First, find BD using Pythagorean Theorem:
BD² = BC² - DC²
BC = 17.89
DC = 16
Plug in the values
BD² = 17.89² - 16²
BD² = 64.0521
BD = √64.0521
BD = 8.0 (nearest tenth)
✔️Next, find AD using the right triangle altitude theorem:
BD = √(AD*DC)
Plug in the values into the equation
8 = √(AD*16)
Square both sides
8² = AD*16
64 = AD*16
Divide both sides by 16
4 = AD
AD = 4
✔️Find AB using Pythagorean Theorem:
AB = √(BD² + AD²)
AB = √(8² + 4²)
AB = √(64 + 16)
AB = √(80)
AB = 8.9 (nearest tenth)
✔️Find sin x using trigonometric ratio formula:
Reference angle = x
Opposite side = BD = 8
Hypotenuse = AB = 8.944
Thus:
(nearest thousandth)